我来自熊猫的背景,我习惯了从CSV文件读取数据到一个dataframe,然后简单地改变列名使用简单的命令有用的东西:

df.columns = new_column_name_list

然而,这在使用sqlContext创建的PySpark数据框架中是行不通的。 我能想到的唯一解决办法是:

df = sqlContext.read.format("com.databricks.spark.csv").options(header='false', inferschema='true', delimiter='\t').load("data.txt")
oldSchema = df.schema
for i,k in enumerate(oldSchema.fields):
  k.name = new_column_name_list[i]
df = sqlContext.read.format("com.databricks.spark.csv").options(header='false', delimiter='\t').load("data.txt", schema=oldSchema)

这基本上是定义变量两次,首先推断模式,然后重命名列名,然后用更新的模式再次加载数据框架。

有没有更好更有效的方法来做到这一点,就像我们对熊猫做的那样?

我的Spark版本是1.5.0


当前回答

列表理解+ f-string:

df = df.toDF(*[f'n_{c}' for c in df.columns])

简单的列表理解:

df = df.toDF(*[c.lower() for c in df.columns])

其他回答

您可以放入for循环,并使用zip将两个数组中的每个列名配对。

new_name = ["id", "sepal_length_cm", "sepal_width_cm", "petal_length_cm", "petal_width_cm", "species"]

new_df = df
for old, new in zip(df.columns, new_name):
    new_df = new_df.withColumnRenamed(old, new)

我做了一个易于使用的函数来重命名pyspark dataframe的多个列, 如果有人想使用它:

def renameCols(df, old_columns, new_columns):
    for old_col,new_col in zip(old_columns,new_columns):
        df = df.withColumnRenamed(old_col,new_col)
    return df

old_columns = ['old_name1','old_name2']
new_columns = ['new_name1', 'new_name2']
df_renamed = renameCols(df, old_columns, new_columns)

注意,两个列表的长度必须相同。

如果你想重命名一个列,并保持其他列不变:

from pyspark.sql.functions import col
new_df = old_df.select(*[col(s).alias(new_name) if s == column_to_change else s for s in old_df.columns])

试试下面的方法。下面的方法允许您重命名多个文件的列

参考:https://www.linkedin.com/pulse/pyspark-methods-rename-columns-kyle-gibson/

df_initial = spark.read.load('com.databricks.spark.csv')
    
    rename_dict = {
      'Alberto':'Name',
      'Dakota':'askdaosdka'
    }
    
    df_renamed = df_initial \
    .select([col(c).alias(rename_dict.get(c, c)) for c in df_initial.columns])

    
     rename_dict = {
       'FName':'FirstName',
       'LName':'LastName',
       'DOB':'BirthDate'
        }

     return df.select([col(c).alias(rename_dict.get(c, c)) for c in df.columns])


df_renamed = spark.read.load('/mnt/datalake/bronze/testData') \
.transform(renameColumns)

这是一个用循环重命名多个列的简单方法:

cols_to_rename = ["col1","col2","col3"]

for col in cols_to_rename:
  df = df.withColumnRenamed(col,"new_{}".format(col))