我来自熊猫的背景,我习惯了从CSV文件读取数据到一个dataframe,然后简单地改变列名使用简单的命令有用的东西:

df.columns = new_column_name_list

然而,这在使用sqlContext创建的PySpark数据框架中是行不通的。 我能想到的唯一解决办法是:

df = sqlContext.read.format("com.databricks.spark.csv").options(header='false', inferschema='true', delimiter='\t').load("data.txt")
oldSchema = df.schema
for i,k in enumerate(oldSchema.fields):
  k.name = new_column_name_list[i]
df = sqlContext.read.format("com.databricks.spark.csv").options(header='false', delimiter='\t').load("data.txt", schema=oldSchema)

这基本上是定义变量两次,首先推断模式,然后重命名列名,然后用更新的模式再次加载数据框架。

有没有更好更有效的方法来做到这一点,就像我们对熊猫做的那样?

我的Spark版本是1.5.0


当前回答

列表理解+ f-string:

df = df.toDF(*[f'n_{c}' for c in df.columns])

简单的列表理解:

df = df.toDF(*[c.lower() for c in df.columns])

其他回答

您可以使用以下函数重命名数据框架的所有列。

def df_col_rename(X, to_rename, replace_with):
    """
    :param X: spark dataframe
    :param to_rename: list of original names
    :param replace_with: list of new names
    :return: dataframe with updated names
    """
    import pyspark.sql.functions as F
    mapping = dict(zip(to_rename, replace_with))
    X = X.select([F.col(c).alias(mapping.get(c, c)) for c in to_rename])
    return X

如果你只需要更新几个列名,你可以在replace_with列表中使用相同的列名

重命名所有列

df_col_rename(X,['a', 'b', 'c'], ['x', 'y', 'z'])

重命名一些列

df_col_rename(X,['a', 'b', 'c'], ['a', 'y', 'z'])

我们可以使用col.alias重命名列:

from pyspark.sql.functions import col
df.select(['vin',col('timeStamp').alias('Date')]).show()

这是一个用循环重命名多个列的简单方法:

cols_to_rename = ["col1","col2","col3"]

for col in cols_to_rename:
  df = df.withColumnRenamed(col,"new_{}".format(col))

如果你想对所有列名应用一个简单的转换,这段代码可以做到:(我用下划线替换所有空格)

new_column_name_list= list(map(lambda x: x.replace(" ", "_"), df.columns))

df = df.toDF(*new_column_name_list)

感谢@user8117731的toDf技巧。

这是我使用的方法:

创建pyspark会话:

import pyspark
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName('changeColNames').getOrCreate()

创建dataframe:

df = spark.createDataFrame(data = [('Bob', 5.62,'juice'),  ('Sue',0.85,'milk')], schema = ["Name", "Amount","Item"])

使用列名查看df:

df.show()
+----+------+-----+
|Name|Amount| Item|
+----+------+-----+
| Bob|  5.62|juice|
| Sue|  0.85| milk|
+----+------+-----+

创建一个包含新列名的列表:

newcolnames = ['NameNew','AmountNew','ItemNew']

修改df的列名:

for c,n in zip(df.columns,newcolnames):
    df=df.withColumnRenamed(c,n)

使用新列名查看df:

df.show()
+-------+---------+-------+
|NameNew|AmountNew|ItemNew|
+-------+---------+-------+
|    Bob|     5.62|  juice|
|    Sue|     0.85|   milk|
+-------+---------+-------+