我来自熊猫的背景,我习惯了从CSV文件读取数据到一个dataframe,然后简单地改变列名使用简单的命令有用的东西:

df.columns = new_column_name_list

然而,这在使用sqlContext创建的PySpark数据框架中是行不通的。 我能想到的唯一解决办法是:

df = sqlContext.read.format("com.databricks.spark.csv").options(header='false', inferschema='true', delimiter='\t').load("data.txt")
oldSchema = df.schema
for i,k in enumerate(oldSchema.fields):
  k.name = new_column_name_list[i]
df = sqlContext.read.format("com.databricks.spark.csv").options(header='false', delimiter='\t').load("data.txt", schema=oldSchema)

这基本上是定义变量两次,首先推断模式,然后重命名列名,然后用更新的模式再次加载数据框架。

有没有更好更有效的方法来做到这一点,就像我们对熊猫做的那样?

我的Spark版本是1.5.0


当前回答

我们可以使用col.alias重命名列:

from pyspark.sql.functions import col
df.select(['vin',col('timeStamp').alias('Date')]).show()

其他回答

如果你想重命名一个列,并保持其他列不变:

from pyspark.sql.functions import col
new_df = old_df.select(*[col(s).alias(new_name) if s == column_to_change else s for s in old_df.columns])

你可以使用多种方法:

df1 = df . withColumn(“new_column”、“old_column)。放下坳(old_column”) df1 = df . withColumn(“new_column”、“old_column”) 选择(“old_column df1 = df。别名(new_column”)

试试下面的方法。下面的方法允许您重命名多个文件的列

参考:https://www.linkedin.com/pulse/pyspark-methods-rename-columns-kyle-gibson/

df_initial = spark.read.load('com.databricks.spark.csv')
    
    rename_dict = {
      'Alberto':'Name',
      'Dakota':'askdaosdka'
    }
    
    df_renamed = df_initial \
    .select([col(c).alias(rename_dict.get(c, c)) for c in df_initial.columns])

    
     rename_dict = {
       'FName':'FirstName',
       'LName':'LastName',
       'DOB':'BirthDate'
        }

     return df.select([col(c).alias(rename_dict.get(c, c)) for c in df.columns])


df_renamed = spark.read.load('/mnt/datalake/bronze/testData') \
.transform(renameColumns)

您可以使用以下函数重命名数据框架的所有列。

def df_col_rename(X, to_rename, replace_with):
    """
    :param X: spark dataframe
    :param to_rename: list of original names
    :param replace_with: list of new names
    :return: dataframe with updated names
    """
    import pyspark.sql.functions as F
    mapping = dict(zip(to_rename, replace_with))
    X = X.select([F.col(c).alias(mapping.get(c, c)) for c in to_rename])
    return X

如果你只需要更新几个列名,你可以在replace_with列表中使用相同的列名

重命名所有列

df_col_rename(X,['a', 'b', 'c'], ['x', 'y', 'z'])

重命名一些列

df_col_rename(X,['a', 'b', 'c'], ['a', 'y', 'z'])

我喜欢使用字典重命名df。

rename = {'old1': 'new1', 'old2': 'new2'}
for col in df.schema.names:
    df = df.withColumnRenamed(col, rename[col])