我有一个Python脚本,它把一个整数列表作为输入,我需要一次处理四个整数。不幸的是,我无法控制输入,否则我将它作为一个四元素元组列表传入。目前,我以这种方式迭代它:

for i in range(0, len(ints), 4):
    # dummy op for example code
    foo += ints[i] * ints[i + 1] + ints[i + 2] * ints[i + 3]

不过,它看起来很像“C-think”,这让我怀疑有一种更python的方式来处理这种情况。该列表在迭代后被丢弃,因此不需要保留。也许这样会更好?

while ints:
    foo += ints[0] * ints[1] + ints[2] * ints[3]
    ints[0:4] = []

不过,感觉还是不太对。: - /

相关问题:在Python中如何将列表分割成大小均匀的块?


当前回答

下面是我的go works on lists,iter和range…懒洋洋地:

def chunker(it,size):
    rv = [] 
    for i,el in enumerate(it,1) :   
        rv.append(el)
        if i % size == 0 : 
            yield rv
            rv = []
    if rv : yield rv        

几乎变成了一句俏皮话;(

In [95]: list(chunker(range(9),2) )                                                                                                                                          
Out[95]: [[0, 1], [2, 3], [4, 5], [6, 7], [8]]

In [96]: list(chunker([1,2,3,4,5],2) )                                                                                                                                       
Out[96]: [[1, 2], [3, 4], [5]]

In [97]: list(chunker(iter(range(9)),2) )                                                                                                                                    
Out[97]: [[0, 1], [2, 3], [4, 5], [6, 7], [8]]

In [98]: list(chunker(range(9),25) )                                                                                                                                         
Out[98]: [[0, 1, 2, 3, 4, 5, 6, 7, 8]]

In [99]: list(chunker(range(9),1) )                                                                                                                                          
Out[99]: [[0], [1], [2], [3], [4], [5], [6], [7], [8]]

In [101]: %timeit list(chunker(range(101),2) )                                                                                                                               
11.3 µs ± 68.2 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

其他回答

你可以使用函数库中的partition或chunks函数:

from funcy import partition

for a, b, c, d in partition(4, ints):
    foo += a * b * c * d

这些函数还有迭代器版本ipartition和ichunks,在这种情况下更有效。

您还可以查看它们的实现。

似乎没有一个漂亮的方法来做到这一点。下面是一个有很多方法的页面,包括:

def split_seq(seq, size):
    newseq = []
    splitsize = 1.0/size*len(seq)
    for i in range(size):
        newseq.append(seq[int(round(i*splitsize)):int(round((i+1)*splitsize))])
    return newseq

关于J.F. Sebastian给出的解决方案:

def chunker(iterable, chunksize):
    return zip(*[iter(iterable)]*chunksize)

它很聪明,但有一个缺点——总是返回元组。如何获得字符串代替? 当然,你可以写“.join(chunker(…))”,但无论如何都要构造临时元组。

你可以通过编写自己的zip来摆脱临时元组,就像这样:

class IteratorExhausted(Exception):
    pass

def translate_StopIteration(iterable, to=IteratorExhausted):
    for i in iterable:
        yield i
    raise to # StopIteration would get ignored because this is generator,
             # but custom exception can leave the generator.

def custom_zip(*iterables, reductor=tuple):
    iterators = tuple(map(translate_StopIteration, iterables))
    while True:
        try:
            yield reductor(next(i) for i in iterators)
        except IteratorExhausted: # when any of iterators get exhausted.
            break

Then

def chunker(data, size, reductor=tuple):
    return custom_zip(*[iter(data)]*size, reductor=reductor)

使用示例:

>>> for i in chunker('12345', 2):
...     print(repr(i))
...
('1', '2')
('3', '4')
>>> for i in chunker('12345', 2, ''.join):
...     print(repr(i))
...
'12'
'34'

除非我遗漏了一些内容,否则没有提到以下使用生成器表达式的简单解决方案。它假设块的大小和数量都是已知的(通常情况下),并且不需要填充:

def chunks(it, n, m):
    """Make an iterator over m first chunks of size n.
    """
    it = iter(it)
    # Chunks are presented as tuples.
    return (tuple(next(it) for _ in range(n)) for _ in range(m))

这个问题的理想解决方案是使用迭代器(而不仅仅是序列)。它还应该是快速的。

这是itertools文档提供的解决方案:

def grouper(n, iterable, fillvalue=None):
    #"grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
    args = [iter(iterable)] * n
    return itertools.izip_longest(fillvalue=fillvalue, *args)

在我的mac book air上使用ipython的%timeit,我每次循环得到47.5 us。

然而,这真的不适合我,因为结果被填充为偶数大小的组。没有填充的解决方案稍微复杂一些。最天真的解决方案可能是:

def grouper(size, iterable):
    i = iter(iterable)
    while True:
        out = []
        try:
            for _ in range(size):
                out.append(i.next())
        except StopIteration:
            yield out
            break
        
        yield out

简单,但相当慢:每循环693个

我能想到的最好的解决方案是使用islice进行内循环:

def grouper(size, iterable):
    it = iter(iterable)
    while True:
        group = tuple(itertools.islice(it, None, size))
        if not group:
            break
        yield group

对于同样的数据集,我每循环得到305 us。

由于无法更快地得到一个纯粹的解决方案,我提供了以下解决方案,但有一个重要的警告:如果您的输入数据中有filldata的实例,则可能会得到错误的答案。

def grouper(n, iterable, fillvalue=None):
    #"grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx"
    args = [iter(iterable)] * n
    # itertools.zip_longest on Python 3
    for x in itertools.izip_longest(*args, fillvalue=fillvalue):
        if x[-1] is fillvalue:
            yield tuple(v for v in x if v is not fillvalue)
        else:
            yield x

我真的不喜欢这个答案,但它明显更快。每回路124 us