我有以下索引DataFrame命名列和行不连续的数字:

          a         b         c         d
2  0.671399  0.101208 -0.181532  0.241273
3  0.446172 -0.243316  0.051767  1.577318
5  0.614758  0.075793 -0.451460 -0.012493

我想添加一个新列,'e',到现有的数据帧,并不想改变数据帧中的任何东西(即,新列始终具有与DataFrame相同的长度)。

0   -0.335485
1   -1.166658
2   -0.385571
dtype: float64

如何将列e添加到上面的例子中?


当前回答

在分配新列之前,如果已经索引了数据,则需要对索引进行排序。至少在我的情况下,我必须:

data.set_index(['index_column'], inplace=True)
"if index is unsorted, assignment of a new column will fail"        
data.sort_index(inplace = True)
data.loc['index_value1', 'column_y'] = np.random.randn(data.loc['index_value1', 'column_x'].shape[0])

其他回答

这是向pandas数据框架添加新列的特殊情况。在这里,我基于数据框架的现有列数据添加了一个新特性/列。

因此,让我们的dataFrame有列'feature_1', 'feature_2', 'probability_score',我们必须根据'probability_score'列中的数据添加一个new_column 'predicted_class'。

我将使用来自python的map()函数,并定义一个我自己的函数,该函数将实现如何给dataFrame中的每一行一个特定的class_label的逻辑。

data = pd.read_csv('data.csv')

def myFunction(x):
   //implement your logic here

   if so and so:
        return a
   return b

variable_1 = data['probability_score']
predicted_class = variable_1.map(myFunction)

data['predicted_class'] = predicted_class

// check dataFrame, new column is included based on an existing column data for each row
data.head()

要在数据帧的给定位置(0 <= loc <=列的数量)插入一个新列,只需使用datafframe .insert:

DataFrame.insert(loc, column, value)

因此,如果你想在一个名为df的数据帧的末尾添加列e,你可以使用:

e = [-0.335485, -1.166658, -0.385571]    
DataFrame.insert(loc=len(df.columns), column='e', value=e)

value可以是一个Series,一个整数(在这种情况下,所有单元格都被这个值填充),或者一个类似数组的结构

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.insert.html

我想添加一个新的列,'e',到现有的数据帧,不改变数据帧中的任何东西。(序列总是与数据帧的长度相同。)

我假设e中的下标值与df1中的下标值匹配。

初始化一个名为e的新列,并将级数e中的值赋给它的最简单方法:

df['e'] = e.values

分配(熊猫0.16.0+)

从Pandas 0.16.0开始,你还可以使用assign,它将新列分配给DataFrame,并返回一个新对象(副本),其中包含所有原始列和新列。

df1 = df1.assign(e=e.values)

根据这个例子(也包括assign函数的源代码),你也可以包含多个列:

df = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
>>> df.assign(mean_a=df.a.mean(), mean_b=df.b.mean())
   a  b  mean_a  mean_b
0  1  3     1.5     3.5
1  2  4     1.5     3.5

在你的例子中:

np.random.seed(0)
df1 = pd.DataFrame(np.random.randn(10, 4), columns=['a', 'b', 'c', 'd'])
mask = df1.applymap(lambda x: x <-0.7)
df1 = df1[-mask.any(axis=1)]
sLength = len(df1['a'])
e = pd.Series(np.random.randn(sLength))

>>> df1
          a         b         c         d
0  1.764052  0.400157  0.978738  2.240893
2 -0.103219  0.410599  0.144044  1.454274
3  0.761038  0.121675  0.443863  0.333674
7  1.532779  1.469359  0.154947  0.378163
9  1.230291  1.202380 -0.387327 -0.302303

>>> e
0   -1.048553
1   -1.420018
2   -1.706270
3    1.950775
4   -0.509652
dtype: float64

df1 = df1.assign(e=e.values)

>>> df1
          a         b         c         d         e
0  1.764052  0.400157  0.978738  2.240893 -1.048553
2 -0.103219  0.410599  0.144044  1.454274 -1.420018
3  0.761038  0.121675  0.443863  0.333674 -1.706270
7  1.532779  1.469359  0.154947  0.378163  1.950775
9  1.230291  1.202380 -0.387327 -0.302303 -0.509652

这个新特性首次引入时的描述可以在这里找到。

如果你得到SettingWithCopyWarning,一个简单的解决方法是复制你想要添加列的数据帧。

df = df.copy()
df['col_name'] = values

向现有数据帧中添加一个新列'e'

 df1.loc[:,'e'] = Series(np.random.randn(sLength))