我遇到过许多NoSQL数据库和SQL数据库。有不同的参数来衡量这些数据库的强弱,可伸缩性就是其中之一。横向和纵向缩放这些数据库有什么区别?


当前回答

水平缩放意味着通过向资源池中添加更多机器来进行缩放,而垂直缩放意味着可以通过向现有机器添加更多功率(CPU、RAM)来进行缩放。

记住这一点的一个简单方法是将机器放在服务器机架上,我们在水平方向上添加更多机器,在垂直方向上向机器添加更多资源。

                 

在数据库世界中,水平缩放通常基于数据的分区,即每个节点仅包含部分数据,在垂直缩放中,数据驻留在单个节点上,通过多核进行缩放,即在该机器的CPU和RAM资源之间分散负载。

通过水平扩展,通过将更多机器添加到现有池中,通常更容易动态扩展。垂直扩展通常限于单个机器的容量,超出该容量的扩展通常会导致停机,并有上限。

水平缩放的好例子有Cassandra、MongoDB、Google Cloud Spaner。。垂直缩放的一个很好的例子是MySQL-Amazon RDS(MySQL的云版本)。通过从小型机器切换到大型机器,它提供了一种简单的垂直缩放方式。此过程通常涉及停机时间。

内存数据网格(如GigaSpaces XAP、Coherence等)通常针对水平和垂直缩放进行优化,因为它们不绑定到磁盘。通过分区实现水平扩展,通过多核支持实现垂直扩展。

你可以在我之前的文章中阅读更多关于这个主题的内容:横向扩展与横向扩展以及NOSQL替代方案背后的共同原则

其他回答

水平缩放意味着通过向资源池中添加更多机器来进行缩放,而垂直缩放意味着可以通过向现有机器添加更多功率(CPU、RAM)来进行缩放。

记住这一点的一个简单方法是将机器放在服务器机架上,我们在水平方向上添加更多机器,在垂直方向上向机器添加更多资源。

                 

在数据库世界中,水平缩放通常基于数据的分区,即每个节点仅包含部分数据,在垂直缩放中,数据驻留在单个节点上,通过多核进行缩放,即在该机器的CPU和RAM资源之间分散负载。

通过水平扩展,通过将更多机器添加到现有池中,通常更容易动态扩展。垂直扩展通常限于单个机器的容量,超出该容量的扩展通常会导致停机,并有上限。

水平缩放的好例子有Cassandra、MongoDB、Google Cloud Spaner。。垂直缩放的一个很好的例子是MySQL-Amazon RDS(MySQL的云版本)。通过从小型机器切换到大型机器,它提供了一种简单的垂直缩放方式。此过程通常涉及停机时间。

内存数据网格(如GigaSpaces XAP、Coherence等)通常针对水平和垂直缩放进行优化,因为它们不绑定到磁盘。通过分区实现水平扩展,通过多核支持实现垂直扩展。

你可以在我之前的文章中阅读更多关于这个主题的内容:横向扩展与横向扩展以及NOSQL替代方案背后的共同原则

水平缩放===>数千小黄人将为您一起完成工作。

垂直缩放===>一个大块头将为您完成所有工作。

传统的关系数据库被设计为客户端/服务器数据库系统。它们可以水平缩放,但这样做的过程往往复杂且容易出错。像NuoDB这样的新SQL数据库是以内存为中心的分布式数据库系统,旨在横向扩展,同时保持传统RDBMS的SQL/AID财产。

有关NuoDB的更多信息,请阅读他们的技术白皮书。

Oracle、db2等SQL数据库也支持通过共享磁盘集群进行水平扩展。例如Oracle RAC、IBM DB2 purescale或Sybase ASE Cluster版本。可以将新节点添加到OracleRAC系统或DB2purescale系统中,以实现水平扩展。

但这种方法与noSQL数据库(如mongodb、CouchDB或IBMCloudant)的不同之处在于,数据分片不是水平缩放的一部分。在noSQL数据库中,数据在水平缩放期间被碎片化。

你有一家公司,只有一名员工,但你当时有一个新项目,你雇佣了新的应聘者——这是横向扩展。其中,新候选是新机器,项目是对api的新流量/调用。

作为一个项目,IIT/NIT负责处理所有对api/流量的请求。如果任何时候对你的api有更多的请求,那就解雇他,换成一个高智商的NIT/IIT家伙——这是垂直缩放。