我遇到过许多NoSQL数据库和SQL数据库。有不同的参数来衡量这些数据库的强弱,可伸缩性就是其中之一。横向和纵向缩放这些数据库有什么区别?


当前回答

你有一家公司,只有一名员工,但你当时有一个新项目,你雇佣了新的应聘者——这是横向扩展。其中,新候选是新机器,项目是对api的新流量/调用。

作为一个项目,IIT/NIT负责处理所有对api/流量的请求。如果任何时候对你的api有更多的请求,那就解雇他,换成一个高智商的NIT/IIT家伙——这是垂直缩放。

其他回答

水平缩放意味着通过向资源池中添加更多机器来进行缩放,而垂直缩放意味着可以通过向现有机器添加更多功率(CPU、RAM)来进行缩放。

记住这一点的一个简单方法是将机器放在服务器机架上,我们在水平方向上添加更多机器,在垂直方向上向机器添加更多资源。

                 

在数据库世界中,水平缩放通常基于数据的分区,即每个节点仅包含部分数据,在垂直缩放中,数据驻留在单个节点上,通过多核进行缩放,即在该机器的CPU和RAM资源之间分散负载。

通过水平扩展,通过将更多机器添加到现有池中,通常更容易动态扩展。垂直扩展通常限于单个机器的容量,超出该容量的扩展通常会导致停机,并有上限。

水平缩放的好例子有Cassandra、MongoDB、Google Cloud Spaner。。垂直缩放的一个很好的例子是MySQL-Amazon RDS(MySQL的云版本)。通过从小型机器切换到大型机器,它提供了一种简单的垂直缩放方式。此过程通常涉及停机时间。

内存数据网格(如GigaSpaces XAP、Coherence等)通常针对水平和垂直缩放进行优化,因为它们不绑定到磁盘。通过分区实现水平扩展,通过多核支持实现垂直扩展。

你可以在我之前的文章中阅读更多关于这个主题的内容:横向扩展与横向扩展以及NOSQL替代方案背后的共同原则

是的,水平缩放意味着添加更多的机器,但这也意味着集群中的机器是相等的。MySQL可以通过使用副本在读取数据方面进行横向扩展,但一旦它达到服务器内存/磁盘的容量,就必须开始在服务器之间分割数据。这变得越来越复杂。由于复制速度通常太慢,无法跟上数据更改速度,因此在副本之间保持数据一致性通常是一个问题。

Couchbase也是一个很棒的NoSQL Horizontal Scaling数据库,用于许多商业高可用性应用程序和游戏,可以说是该类别中性能最高的数据库。它跨集群自动分区数据,添加节点很简单,而且您可以使用商品硬件、更便宜的虚拟机实例(例如,AWS使用大型而不是高内存、高磁盘机器)。它基于Membase(Memcached)构建,但增加了持久性。此外,在Couchbase的情况下,每个节点都可以执行读取和写入,并且在集群中都是平等的,只有故障切换复制(而不是像mySQL那样跨所有服务器进行完整数据集复制)。

性能方面,您可以看到一个优秀的Cisco基准:http://blog.couchbase.com/understanding-performance-benchmark-published-cisco-and-solarflare-using-couchbase-server

这里有一篇关于Couchbase架构的博客文章:http://horicky.blogspot.com/2012/07/couchbase-architecture.html

传统的关系数据库被设计为客户端/服务器数据库系统。它们可以水平缩放,但这样做的过程往往复杂且容易出错。像NuoDB这样的新SQL数据库是以内存为中心的分布式数据库系统,旨在横向扩展,同时保持传统RDBMS的SQL/AID财产。

有关NuoDB的更多信息,请阅读他们的技术白皮书。

添加大量负载平衡器会产生额外的开销和延迟,这是在nosql数据库中横向扩展的缺点。这就像人们为什么说RPC不推荐的问题,因为它不健壮。

我认为在一个真实的系统中,我们应该同时使用sql和nosql数据库来利用当今系统的多核和云计算能力。

另一方面,如果使用oracle之类的sql数据库,复杂的事务查询具有很高的性能。NoSql可以通过分片用于bigdata和水平可伸缩性。

Oracle、db2等SQL数据库也支持通过共享磁盘集群进行水平扩展。例如Oracle RAC、IBM DB2 purescale或Sybase ASE Cluster版本。可以将新节点添加到OracleRAC系统或DB2purescale系统中,以实现水平扩展。

但这种方法与noSQL数据库(如mongodb、CouchDB或IBMCloudant)的不同之处在于,数据分片不是水平缩放的一部分。在noSQL数据库中,数据在水平缩放期间被碎片化。