我遇到过许多NoSQL数据库和SQL数据库。有不同的参数来衡量这些数据库的强弱,可伸缩性就是其中之一。横向和纵向缩放这些数据库有什么区别?
当前回答
添加大量负载平衡器会产生额外的开销和延迟,这是在nosql数据库中横向扩展的缺点。这就像人们为什么说RPC不推荐的问题,因为它不健壮。
我认为在一个真实的系统中,我们应该同时使用sql和nosql数据库来利用当今系统的多核和云计算能力。
另一方面,如果使用oracle之类的sql数据库,复杂的事务查询具有很高的性能。NoSql可以通过分片用于bigdata和水平可伸缩性。
其他回答
公认的答案是水平与垂直缩放的基本定义。但与人们普遍认为的只有Cassandra、MongoDB等才能实现数据库的水平缩放不同,我想补充一点,任何传统的RDMS都可以实现水平缩放;而不使用任何第三方解决方案。
我知道很多公司,特别是基于SaaS的公司都这样做。这是使用简单的应用程序逻辑完成的。基本上,您需要一组用户,并将他们划分到多个DB服务器上。因此,例如,您通常会有一个存储客户端、DB服务器/连接字符串等的“元”数据库/表,以及一个存储客户机/服务器映射的表。
然后,只需将来自每个客户端的请求定向到它们映射到的DB服务器。
现在有些人可能会说这类似于水平分区,而不是“真正的”水平缩放,他们在某些方面是正确的。但最终结果是,您已经在多个DB服务器上扩展了数据库。
两种水平缩放方法之间的唯一区别是,一种方法(MongoDB等)缩放是由DB软件本身完成的。从这个意义上说,你是在“购买”规模。在另一种方法中(对于RDBMS水平缩放),缩放是由应用程序代码/逻辑构建的。
还有一个没有提到的额外架构——基于SQL的数据库服务,它支持水平扩展,而不需要手动分片的复杂性。这些服务在后台进行分片,因此它们使您能够运行传统的SQL数据库,并像使用MongoDB或CouchDB等NoSQL引擎一样进行扩展。我熟悉的两个服务是EnterpriseDB for PostgreSQL和Xeround for MySQL。我看到了Xeround的一篇深入文章,它解释了为什么SQL数据库的扩展很困难,以及它们如何以不同的方式进行扩展——用一点盐来看待这一点,因为这是一篇供应商文章。还可以查看维基百科的云数据库条目,其中对SQL与NoSQL以及服务与自托管进行了很好的解释,列出了每种组合的供应商和扩展选项
水平缩放===>数千小黄人将为您一起完成工作。
垂直缩放===>一个大块头将为您完成所有工作。
Oracle、db2等SQL数据库也支持通过共享磁盘集群进行水平扩展。例如Oracle RAC、IBM DB2 purescale或Sybase ASE Cluster版本。可以将新节点添加到OracleRAC系统或DB2purescale系统中,以实现水平扩展。
但这种方法与noSQL数据库(如mongodb、CouchDB或IBMCloudant)的不同之处在于,数据分片不是水平缩放的一部分。在noSQL数据库中,数据在水平缩放期间被碎片化。
你有一家公司,只有一名员工,但你当时有一个新项目,你雇佣了新的应聘者——这是横向扩展。其中,新候选是新机器,项目是对api的新流量/调用。
作为一个项目,IIT/NIT负责处理所有对api/流量的请求。如果任何时候对你的api有更多的请求,那就解雇他,换成一个高智商的NIT/IIT家伙——这是垂直缩放。