我如何才能找到(遍历)有向图中从/到给定节点的所有周期?

例如,我想要这样的东西:

A->B->A
A->B->C->A

而不是: B - > C > B


当前回答

从开始节点s开始的DFS,在遍历过程中跟踪DFS路径,如果在到s的路径中发现从节点v开始的边,则记录该路径。(v,s)是DFS树中的后边,因此表示包含s的周期。

其他回答

如果你想要在图中找到所有基本电路,你可以使用JAMES C. TIERNAN的EC算法,该算法在1970年的一篇论文中发现。

非常原始的EC算法,因为我设法在php中实现它(希望没有错误如下所示)。如果有循环,它也可以找到。这个实现中的电路(试图克隆原始电路)是非零元素。0在这里代表不存在(我们知道它是空的)。

除此之外,下面的实现使算法更具独立性,这意味着节点可以从任何地方开始,甚至从负数开始,例如-4,-3,-2,..等。

在这两种情况下,都要求节点是顺序的。

你可能需要研究原始论文,James C. Tiernan基本电路算法

<?php
echo  "<pre><br><br>";

$G = array(
        1=>array(1,2,3),
        2=>array(1,2,3),
        3=>array(1,2,3)
);


define('N',key(array_slice($G, -1, 1, true)));
$P = array(1=>0,2=>0,3=>0,4=>0,5=>0);
$H = array(1=>$P, 2=>$P, 3=>$P, 4=>$P, 5=>$P );
$k = 1;
$P[$k] = key($G);
$Circ = array();


#[Path Extension]
EC2_Path_Extension:
foreach($G[$P[$k]] as $j => $child ){
    if( $child>$P[1] and in_array($child, $P)===false and in_array($child, $H[$P[$k]])===false ){
    $k++;
    $P[$k] = $child;
    goto EC2_Path_Extension;
}   }

#[EC3 Circuit Confirmation]
if( in_array($P[1], $G[$P[$k]])===true ){//if PATH[1] is not child of PATH[current] then don't have a cycle
    $Circ[] = $P;
}

#[EC4 Vertex Closure]
if($k===1){
    goto EC5_Advance_Initial_Vertex;
}
//afou den ksana theoreitai einai asfales na svisoume
for( $m=1; $m<=N; $m++){//H[P[k], m] <- O, m = 1, 2, . . . , N
    if( $H[$P[$k-1]][$m]===0 ){
        $H[$P[$k-1]][$m]=$P[$k];
        break(1);
    }
}
for( $m=1; $m<=N; $m++ ){//H[P[k], m] <- O, m = 1, 2, . . . , N
    $H[$P[$k]][$m]=0;
}
$P[$k]=0;
$k--;
goto EC2_Path_Extension;

#[EC5 Advance Initial Vertex]
EC5_Advance_Initial_Vertex:
if($P[1] === N){
    goto EC6_Terminate;
}
$P[1]++;
$k=1;
$H=array(
        1=>array(1=>0,2=>0,3=>0,4=>0,5=>0),
        2=>array(1=>0,2=>0,3=>0,4=>0,5=>0),
        3=>array(1=>0,2=>0,3=>0,4=>0,5=>0),
        4=>array(1=>0,2=>0,3=>0,4=>0,5=>0),
        5=>array(1=>0,2=>0,3=>0,4=>0,5=>0)
);
goto EC2_Path_Extension;

#[EC5 Advance Initial Vertex]
EC6_Terminate:
print_r($Circ);
?>

然后这是另一个实现,更独立于图形,没有goto和数组值,而是使用数组键,路径,图形和电路存储为数组键(如果你喜欢使用数组值,只需更改所需的行)。示例图从-4开始,以显示其独立性。

<?php

$G = array(
        -4=>array(-4=>true,-3=>true,-2=>true),
        -3=>array(-4=>true,-3=>true,-2=>true),
        -2=>array(-4=>true,-3=>true,-2=>true)
);


$C = array();


EC($G,$C);
echo "<pre>";
print_r($C);
function EC($G, &$C){

    $CNST_not_closed =  false;                          // this flag indicates no closure
    $CNST_closed        = true;                         // this flag indicates closure
    // define the state where there is no closures for some node
    $tmp_first_node  =  key($G);                        // first node = first key
    $tmp_last_node  =   $tmp_first_node-1+count($G);    // last node  = last  key
    $CNST_closure_reset = array();
    for($k=$tmp_first_node; $k<=$tmp_last_node; $k++){
        $CNST_closure_reset[$k] = $CNST_not_closed;
    }
    // define the state where there is no closure for all nodes
    for($k=$tmp_first_node; $k<=$tmp_last_node; $k++){
        $H[$k] = $CNST_closure_reset;   // Key in the closure arrays represent nodes
    }
    unset($tmp_first_node);
    unset($tmp_last_node);


    # Start algorithm
    foreach($G as $init_node => $children){#[Jump to initial node set]
        #[Initial Node Set]
        $P = array();                   // declare at starup, remove the old $init_node from path on loop
        $P[$init_node]=true;            // the first key in P is always the new initial node
        $k=$init_node;                  // update the current node
                                        // On loop H[old_init_node] is not cleared cause is never checked again
        do{#Path 1,3,7,4 jump here to extend father 7
            do{#Path from 1,3,8,5 became 2,4,8,5,6 jump here to extend child 6
                $new_expansion = false;
                foreach( $G[$k] as $child => $foo ){#Consider each child of 7 or 6
                    if( $child>$init_node and isset($P[$child])===false and $H[$k][$child]===$CNST_not_closed ){
                        $P[$child]=true;    // add this child to the path
                        $k = $child;        // update the current node
                        $new_expansion=true;// set the flag for expanding the child of k
                        break(1);           // we are done, one child at a time
            }   }   }while(($new_expansion===true));// Do while a new child has been added to the path

            # If the first node is child of the last we have a circuit
            if( isset($G[$k][$init_node])===true ){
                $C[] = $P;  // Leaving this out of closure will catch loops to
            }

            # Closure
            if($k>$init_node){                  //if k>init_node then alwaya count(P)>1, so proceed to closure
                $new_expansion=true;            // $new_expansion is never true, set true to expand father of k
                unset($P[$k]);                  // remove k from path
                end($P); $k_father = key($P);   // get father of k
                $H[$k_father][$k]=$CNST_closed; // mark k as closed
                $H[$k] = $CNST_closure_reset;   // reset k closure
                $k = $k_father;                 // update k
        }   } while($new_expansion===true);//if we don't wnter the if block m has the old k$k_father_old = $k;
        // Advance Initial Vertex Context
    }//foreach initial


}//function

?>

我已经分析并记录了EC,但不幸的是,文档是希腊语。

在无向图的情况下,最近发表的一篇论文(无向图中循环和st路径的最优列表)提供了一个渐近最优解。你可以在这里阅读http://arxiv.org/abs/1205.2766或http://dl.acm.org/citation.cfm?id=2627951 我知道它不能回答你的问题,但由于你的问题标题没有提到方向,它可能仍然对谷歌搜索有用

基于dfs的带有后边缘的变体确实会发现循环,但在许多情况下,它不会是最小循环。一般来说,DFS给出了存在循环的标志,但它不足以真正找到循环。例如,想象5个不同的循环共用两条边。仅仅使用DFS(包括回溯变量)没有简单的方法来识别周期。

Johnson算法确实给出了所有唯一的简单循环,并具有良好的时间和空间复杂度。

但如果你只想找到最小循环(意味着可能有多个循环通过任何顶点,我们感兴趣的是找到最小循环),并且你的图不是很大,你可以尝试使用下面的简单方法。 它非常简单,但与约翰逊的相比相当慢。

So, one of the absolutely easiest way to find MINIMAL cycles is to use Floyd's algorithm to find minimal paths between all the vertices using adjacency matrix. This algorithm is nowhere near as optimal as Johnson's, but it is so simple and its inner loop is so tight that for smaller graphs (<=50-100 nodes) it absolutely makes sense to use it. Time complexity is O(n^3), space complexity O(n^2) if you use parent tracking and O(1) if you don't. First of all let's find the answer to the question if there is a cycle. The algorithm is dead-simple. Below is snippet in Scala.

  val NO_EDGE = Integer.MAX_VALUE / 2

  def shortestPath(weights: Array[Array[Int]]) = {
    for (k <- weights.indices;
         i <- weights.indices;
         j <- weights.indices) {
      val throughK = weights(i)(k) + weights(k)(j)
      if (throughK < weights(i)(j)) {
        weights(i)(j) = throughK
      }
    }
  }

Originally this algorithm operates on weighted-edge graph to find all shortest paths between all pairs of nodes (hence the weights argument). For it to work correctly you need to provide 1 if there is a directed edge between the nodes or NO_EDGE otherwise. After algorithm executes, you can check the main diagonal, if there are values less then NO_EDGE than this node participates in a cycle of length equal to the value. Every other node of the same cycle will have the same value (on the main diagonal).

为了重建周期本身,我们需要使用带有父跟踪的稍微修改版本的算法。

  def shortestPath(weights: Array[Array[Int]], parents: Array[Array[Int]]) = {
    for (k <- weights.indices;
         i <- weights.indices;
         j <- weights.indices) {
      val throughK = weights(i)(k) + weights(k)(j)
      if (throughK < weights(i)(j)) {
        parents(i)(j) = k
        weights(i)(j) = throughK
      }
    }
  }

如果顶点之间有边,父矩阵最初应该包含边缘单元中的源顶点索引,否则为-1。 函数返回后,对于每条边,您都将引用到最短路径树中的父节点。 然后很容易恢复实际的循环。

总之,我们有下面的程序来求所有的最小循环

  val NO_EDGE = Integer.MAX_VALUE / 2;

  def shortestPathWithParentTracking(
         weights: Array[Array[Int]],
         parents: Array[Array[Int]]) = {
    for (k <- weights.indices;
         i <- weights.indices;
         j <- weights.indices) {
      val throughK = weights(i)(k) + weights(k)(j)
      if (throughK < weights(i)(j)) {
        parents(i)(j) = parents(i)(k)
        weights(i)(j) = throughK
      }
    }
  }

  def recoverCycles(
         cycleNodes: Seq[Int], 
         parents: Array[Array[Int]]): Set[Seq[Int]] = {
    val res = new mutable.HashSet[Seq[Int]]()
    for (node <- cycleNodes) {
      var cycle = new mutable.ArrayBuffer[Int]()
      cycle += node
      var other = parents(node)(node)
      do {
        cycle += other
        other = parents(other)(node)
      } while(other != node)
      res += cycle.sorted
    }
    res.toSet
  }

还有一个小的main方法来测试结果

  def main(args: Array[String]): Unit = {
    val n = 3
    val weights = Array(Array(NO_EDGE, 1, NO_EDGE), Array(NO_EDGE, NO_EDGE, 1), Array(1, NO_EDGE, NO_EDGE))
    val parents = Array(Array(-1, 1, -1), Array(-1, -1, 2), Array(0, -1, -1))
    shortestPathWithParentTracking(weights, parents)
    val cycleNodes = parents.indices.filter(i => parents(i)(i) < NO_EDGE)
    val cycles: Set[Seq[Int]] = recoverCycles(cycleNodes, parents)
    println("The following minimal cycle found:")
    cycles.foreach(c => println(c.mkString))
    println(s"Total: ${cycles.size} cycle found")
  }

输出是

The following minimal cycle found:
012
Total: 1 cycle found

关于你关于排列周期的问题,请在这里阅读更多: https://www.codechef.com/problems/PCYCLE

您可以尝试以下代码(输入大小和数字number):

# include<cstdio>
using namespace std;

int main()
{
    int n;
    scanf("%d",&n);

    int num[1000];
    int visited[1000]={0};
    int vindex[2000];
    for(int i=1;i<=n;i++)
        scanf("%d",&num[i]);

    int t_visited=0;
    int cycles=0;
    int start=0, index;

    while(t_visited < n)
    {
        for(int i=1;i<=n;i++)
        {
            if(visited[i]==0)
            {
                vindex[start]=i;
                visited[i]=1;
                t_visited++;
                index=start;
                break;
            }
        }
        while(true)
        {
            index++;
            vindex[index]=num[vindex[index-1]];

            if(vindex[index]==vindex[start])
                break;
            visited[vindex[index]]=1;
            t_visited++;
        }
        vindex[++index]=0;
        start=index+1;
        cycles++;
    }

    printf("%d\n",cycles,vindex[0]);

    for(int i=0;i<(n+2*cycles);i++)
    {
        if(vindex[i]==0)
            printf("\n");
        else
            printf("%d ",vindex[i]);
    }
}

CXXGraph库提供了一组检测周期的算法和函数。

要获得完整的算法解释,请访问wiki。