我如何有效地获得一个NumPy数组中每个唯一值的频率计数?
>>> x = np.array([1,1,1,2,2,2,5,25,1,1])
>>> freq_count(x)
[(1, 5), (2, 3), (5, 1), (25, 1)]
我如何有效地获得一个NumPy数组中每个唯一值的频率计数?
>>> x = np.array([1,1,1,2,2,2,5,25,1,1])
>>> freq_count(x)
[(1, 5), (2, 3), (5, 1), (25, 1)]
当前回答
numpy。Bincount可能是最好的选择。如果你的数组除了包含小的密集整数之外还包含任何东西,那么像这样包装它可能是有用的:
def count_unique(keys):
uniq_keys = np.unique(keys)
bins = uniq_keys.searchsorted(keys)
return uniq_keys, np.bincount(bins)
例如:
>>> x = array([1,1,1,2,2,2,5,25,1,1])
>>> count_unique(x)
(array([ 1, 2, 5, 25]), array([5, 3, 1, 1]))
其他回答
使用pandas模块:
>>> import pandas as pd
>>> import numpy as np
>>> x = np.array([1,1,1,2,2,2,5,25,1,1])
>>> pd.value_counts(x)
1 5
2 3
25 1
5 1
dtype: int64
你可以这样写freq_count:
def freq_count(data):
mp = dict();
for i in data:
if i in mp:
mp[i] = mp[i]+1
else:
mp[i] = 1
return mp
我对此也很感兴趣,所以我做了一点性能比较(使用perfplot,我的一个爱好项目)。结果:
y = np.bincount(a)
ii = np.nonzero(y)[0]
out = np.vstack((ii, y[ii])).T
是目前为止最快的。(请注意对数缩放。)
代码生成的情节:
import numpy as np
import pandas as pd
import perfplot
from scipy.stats import itemfreq
def bincount(a):
y = np.bincount(a)
ii = np.nonzero(y)[0]
return np.vstack((ii, y[ii])).T
def unique(a):
unique, counts = np.unique(a, return_counts=True)
return np.asarray((unique, counts)).T
def unique_count(a):
unique, inverse = np.unique(a, return_inverse=True)
count = np.zeros(len(unique), dtype=int)
np.add.at(count, inverse, 1)
return np.vstack((unique, count)).T
def pandas_value_counts(a):
out = pd.value_counts(pd.Series(a))
out.sort_index(inplace=True)
out = np.stack([out.keys().values, out.values]).T
return out
b = perfplot.bench(
setup=lambda n: np.random.randint(0, 1000, n),
kernels=[bincount, unique, itemfreq, unique_count, pandas_value_counts],
n_range=[2 ** k for k in range(26)],
xlabel="len(a)",
)
b.save("out.png")
b.show()
from collections import Counter
x = array( [1,1,1,2,2,2,5,25,1,1] )
mode = counter.most_common(1)[0][0]
这是迄今为止最通用和性能最好的解决方案;很惊讶它还没有发布。
import numpy as np
def unique_count(a):
unique, inverse = np.unique(a, return_inverse=True)
count = np.zeros(len(unique), np.int)
np.add.at(count, inverse, 1)
return np.vstack(( unique, count)).T
print unique_count(np.random.randint(-10,10,100))
与目前接受的答案不同,它适用于任何可排序的数据类型(不仅仅是正整数),并且具有最佳性能;唯一重要的开销是np.unique所做的排序。