我如何有效地获得一个NumPy数组中每个唯一值的频率计数?

>>> x = np.array([1,1,1,2,2,2,5,25,1,1])
>>> freq_count(x)
[(1, 5), (2, 3), (5, 1), (25, 1)]

当前回答

你可以这样写freq_count:

def freq_count(data):
    mp = dict();
    for i in data:
        if i in mp:
            mp[i] = mp[i]+1
        else:
            mp[i] = 1
    return mp

其他回答

看看np.bincount:

http://docs.scipy.org/doc/numpy/reference/generated/numpy.bincount.html

import numpy as np
x = np.array([1,1,1,2,2,2,5,25,1,1])
y = np.bincount(x)
ii = np.nonzero(y)[0]

然后:

zip(ii,y[ii]) 
# [(1, 5), (2, 3), (5, 1), (25, 1)]

or:

np.vstack((ii,y[ii])).T
# array([[ 1,  5],
         [ 2,  3],
         [ 5,  1],
         [25,  1]])

或者你想结合计数和唯一值。

这是迄今为止最通用和性能最好的解决方案;很惊讶它还没有发布。

import numpy as np

def unique_count(a):
    unique, inverse = np.unique(a, return_inverse=True)
    count = np.zeros(len(unique), np.int)
    np.add.at(count, inverse, 1)
    return np.vstack(( unique, count)).T

print unique_count(np.random.randint(-10,10,100))

与目前接受的答案不同,它适用于任何可排序的数据类型(不仅仅是正整数),并且具有最佳性能;唯一重要的开销是np.unique所做的排序。

多维频率计数,即计数数组。

>>> print(color_array    )
  array([[255, 128, 128],
   [255, 128, 128],
   [255, 128, 128],
   ...,
   [255, 128, 128],
   [255, 128, 128],
   [255, 128, 128]], dtype=uint8)


>>> np.unique(color_array,return_counts=True,axis=0)
  (array([[ 60, 151, 161],
    [ 60, 155, 162],
    [ 60, 159, 163],
    [ 61, 143, 162],
    [ 61, 147, 162],
    [ 61, 162, 163],
    [ 62, 166, 164],
    [ 63, 137, 162],
    [ 63, 169, 164],
   array([     1,      2,      2,      1,      4,      1,      1,      2,
         3,      1,      1,      1,      2,      5,      2,      2,
       898,      1,      1,  

老问题,但我想提供我自己的解决方案,这是最快的,使用普通列表而不是np。数组作为输入(或首先转移到列表),基于我的台架测试。

如果你也遇到这种情况,请检查一下。

def count(a):
    results = {}
    for x in a:
        if x not in results:
            results[x] = 1
        else:
            results[x] += 1
    return results

例如,

>>>timeit count([1,1,1,2,2,2,5,25,1,1]) would return:

100000个循环,最好的3:2.26µs每循环

>>>timeit count(np.array([1,1,1,2,2,2,5,25,1,1]))

100000个回路,最好的3:8.8µs每回路

>>>timeit count(np.array([1,1,1,2,2,2,5,25,1,1]).tolist())

100000个回路,最佳3:5.85µs每回路

而公认的答案会更慢,而scipy.stats.itemfreq解决方案更糟糕。


更深入的测试并没有证实所制定的期望。

from zmq import Stopwatch
aZmqSTOPWATCH = Stopwatch()

aDataSETasARRAY = ( 100 * abs( np.random.randn( 150000 ) ) ).astype( np.int )
aDataSETasLIST  = aDataSETasARRAY.tolist()

import numba
@numba.jit
def numba_bincount( anObject ):
    np.bincount(    anObject )
    return

aZmqSTOPWATCH.start();np.bincount(    aDataSETasARRAY );aZmqSTOPWATCH.stop()
14328L

aZmqSTOPWATCH.start();numba_bincount( aDataSETasARRAY );aZmqSTOPWATCH.stop()
592L

aZmqSTOPWATCH.start();count(          aDataSETasLIST  );aZmqSTOPWATCH.stop()
148609L

参考下面关于影响小型数据集大量重复测试结果的缓存和其他ram内副作用的评论。

像这样的东西应该做到:

#create 100 random numbers
arr = numpy.random.random_integers(0,50,100)

#create a dictionary of the unique values
d = dict([(i,0) for i in numpy.unique(arr)])
for number in arr:
    d[j]+=1   #increment when that value is found

另外,之前的这篇关于有效计算独特元素的文章似乎与您的问题非常相似,除非我遗漏了什么。