如何将以下字符串转换为datetime对象?

"Jun 1 2005  1:33PM"

当前回答

我个人喜欢使用解析器模块的解决方案,这是这个问题的第二个答案,非常漂亮,因为您不必构造任何字符串文字就能使其工作。但是,一个缺点是它比strptime的公认答案慢了90%。

from dateutil import parser
from datetime import datetime
import timeit

def dt():
    dt = parser.parse("Jun 1 2005  1:33PM")
def strptime():
    datetime_object = datetime.strptime('Jun 1 2005  1:33PM', '%b %d %Y %I:%M%p')

print(timeit.timeit(stmt=dt, number=10**5))
print(timeit.timeit(stmt=strptime, number=10**5))

输出:

10.702968013429021.3627995655316933

只要你不反复做一百万次,我仍然认为解析器方法更方便,并且可以自动处理大多数时间格式。

其他回答

使用第三方dateutil库:

from dateutil import parser
parser.parse("Aug 28 1999 12:00AM")  # datetime.datetime(1999, 8, 28, 0, 0)

它可以处理大多数日期格式,并且比strptime更方便,因为它通常猜测正确的格式。它对于编写测试也非常有用,因为可读性比性能更重要。

安装时使用:

pip install python-dateutil

创建一个小的实用程序函数,如:

def date(datestr="", format="%Y-%m-%d"):
    from datetime import datetime
    if not datestr:
        return datetime.today().date()
    return datetime.strptime(datestr, format).date()

这是足够多功能的:

如果不传递任何参数,它将返回今天的日期。有一个日期格式作为默认值,您可以覆盖它。您可以轻松地修改它以返回日期时间。

使用熊猫时间戳似乎是最快的:

import pandas as pd

N = 1000

l = ['Jun 1 2005  1:33PM'] * N

list(pd.to_datetime(l, format=format))

%timeit _ = list(pd.to_datetime(l, format=format))
1.58 ms ± 21.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

其他解决方案

from datetime import datetime
%timeit _ = list(map(lambda x: datetime.strptime(x, format), l))
9.41 ms ± 95.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

from dateutil.parser import parse
%timeit _ = list(map(lambda x: parse(x), l))
73.8 ms ± 1.14 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

如果字符串是ISO 8601字符串,请使用csio8601:

import ciso8601

l = ['2014-01-09'] * N

%timeit _ = list(map(lambda x: ciso8601.parse_datetime(x), l))
186 µs ± 4.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

Use:

emp = pd.read_csv("C:\\py\\programs\\pandas_2\\pandas\\employees.csv")
emp.info()

它显示“开始日期时间”列和“上次登录时间”都是数据帧中的“对象=字符串”:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
First Name           933 non-null object
Gender               855 non-null object

    Start Date           1000 non-null object

    Last Login Time      1000 non-null object

Salary               1000 non-null int64
Bonus %              1000 non-null float64
Senior Management    933 non-null object
Team                 957 non-null object
dtypes: float64(1), int64(1), object(6)
memory usage: 62.6+ KB

通过使用read_csv中的parse_dates选项,可以将字符串datetime转换为panda datetime格式。

emp = pd.read_csv("C:\\py\\programs\\pandas_2\\pandas\\employees.csv", parse_dates=["Start Date", "Last Login Time"])
emp.info()

输出:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
First Name           933 non-null object
Gender               855 non-null object

     Start Date           1000 non-null datetime64[ns]
     Last Login Time      1000 non-null datetime64[ns]

Salary               1000 non-null int64
Bonus %              1000 non-null float64
Senior Management    933 non-null object
Team                 957 non-null object
dtypes: datetime64[ns](2), float64(1), int64(1), object(4)
memory usage: 62.6+ KB
#Convert String to datetime
>>> x=datetime.strptime('Jun 1 2005', '%b %d %Y').date()
>>> print(x,type(x))
2005-06-01 00:00:00 <class 'datetime.datetime'>


#Convert datetime to String (Reverse above process)
>>> y=x.strftime('%b %d %Y')
>>> print(y,type(y))
Jun 01 2005 <class 'str'>