如何将以下字符串转换为datetime对象?

"Jun 1 2005  1:33PM"

当前回答

看看我的答案。

在真实数据中,这是一个真正的问题:多个、不匹配、不完整、不一致和多语言/地区日期格式,通常在一个数据集中自由混合。生产代码失败是不好的,更不用说像狐狸一样高兴异常了。

我们需要尝试。。。捕获多个日期时间格式fmt1,fmt2,。。。,fmtn和抑制/处理所有不匹配的异常(来自strptime())(特别是,避免需要try…catch子句的yukky-n-deep缩进阶梯)。从我的解决方案

def try_strptime(s, fmts=['%d-%b-%y','%m/%d/%Y']):
    for fmt in fmts:
        try:
            return datetime.strptime(s, fmt)
        except:
            continue

    return None # or reraise the ValueError if no format matched, if you prefer

其他回答

看看我的答案。

在真实数据中,这是一个真正的问题:多个、不匹配、不完整、不一致和多语言/地区日期格式,通常在一个数据集中自由混合。生产代码失败是不好的,更不用说像狐狸一样高兴异常了。

我们需要尝试。。。捕获多个日期时间格式fmt1,fmt2,。。。,fmtn和抑制/处理所有不匹配的异常(来自strptime())(特别是,避免需要try…catch子句的yukky-n-deep缩进阶梯)。从我的解决方案

def try_strptime(s, fmts=['%d-%b-%y','%m/%d/%Y']):
    for fmt in fmts:
        try:
            return datetime.strptime(s, fmt)
        except:
            continue

    return None # or reraise the ValueError if no format matched, if you prefer

许多时间戳都有一个隐含的时区。为了确保您的代码在每个时区都有效,您应该在内部使用UTC,并在每次外来对象进入系统时附加一个时区。

Python 3.2+:

>>> datetime.datetime.strptime(
...     "March 5, 2014, 20:13:50", "%B %d, %Y, %H:%M:%S"
... ).replace(tzinfo=datetime.timezone(datetime.timedelta(hours=-3)))

这假设您知道偏移量。如果您不知道,但您知道例如位置,您可以使用pytz包查询IANA时区数据库中的偏移量。我将在这里以德黑兰为例,因为它有半小时的偏移量:

>>> tehran = pytz.timezone("Asia/Tehran")
>>> local_time = tehran.localize(
...   datetime.datetime.strptime("March 5, 2014, 20:13:50",
...                              "%B %d, %Y, %H:%M:%S")
... )
>>> local_time
datetime.datetime(2014, 3, 5, 20, 13, 50, tzinfo=<DstTzInfo 'Asia/Tehran' +0330+3:30:00 STD>)

如您所见,pytz已确定在特定日期的偏移量为+3:30。您现在可以将其转换为UTC时间,它将应用偏移量:

>>> utc_time = local_time.astimezone(pytz.utc)
>>> utc_time
datetime.datetime(2014, 3, 5, 16, 43, 50, tzinfo=<UTC>)

请注意,采用时区之前的日期会给您带来奇怪的偏移。这是因为IANA决定使用本地平均时间:

>>> chicago = pytz.timezone("America/Chicago")
>>> weird_time = chicago.localize(
...   datetime.datetime.strptime("November 18, 1883, 11:00:00",
...                              "%B %d, %Y, %H:%M:%S")
... )
>>> weird_time.astimezone(pytz.utc)
datetime.datetime(1883, 11, 18, 7, 34, tzinfo=<UTC>)

奇怪的“7小时34分钟”源自芝加哥的经度。我使用这个时间戳是因为它正好在芝加哥采用标准时间之前。

Django时区感知日期时间对象示例。

import datetime
from django.utils.timezone import get_current_timezone
tz = get_current_timezone()

format = '%b %d %Y %I:%M%p'
date_object = datetime.datetime.strptime('Jun 1 2005  1:33PM', format)
date_obj = tz.localize(date_object)

当USE_TZ=True时,这种转换对于Django和Python非常重要:

RuntimeWarning: DateTimeField MyModel.created received a naive datetime (2016-03-04 00:00:00) while time zone support is active.

Python>=3.7

要将YYYY-MM-DD字符串转换为datetime对象,可以使用datetime.fromisoformat。

from datetime import datetime

date_string = "2012-12-12 10:10:10"
print (datetime.fromisoformat(date_string))
2012-12-12 10:10:10

文档中的注意事项:

这不支持解析任意的ISO 8601字符串-它只是作为datetime.isoformat()的反操作。第三方包dateutil中提供了一个功能更全面的ISO 8602解析器dateutil.parser.isorse。

Use:

emp = pd.read_csv("C:\\py\\programs\\pandas_2\\pandas\\employees.csv")
emp.info()

它显示“开始日期时间”列和“上次登录时间”都是数据帧中的“对象=字符串”:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
First Name           933 non-null object
Gender               855 non-null object

    Start Date           1000 non-null object

    Last Login Time      1000 non-null object

Salary               1000 non-null int64
Bonus %              1000 non-null float64
Senior Management    933 non-null object
Team                 957 non-null object
dtypes: float64(1), int64(1), object(6)
memory usage: 62.6+ KB

通过使用read_csv中的parse_dates选项,可以将字符串datetime转换为panda datetime格式。

emp = pd.read_csv("C:\\py\\programs\\pandas_2\\pandas\\employees.csv", parse_dates=["Start Date", "Last Login Time"])
emp.info()

输出:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
First Name           933 non-null object
Gender               855 non-null object

     Start Date           1000 non-null datetime64[ns]
     Last Login Time      1000 non-null datetime64[ns]

Salary               1000 non-null int64
Bonus %              1000 non-null float64
Senior Management    933 non-null object
Team                 957 non-null object
dtypes: datetime64[ns](2), float64(1), int64(1), object(4)
memory usage: 62.6+ KB