如何将以下字符串转换为datetime对象?
"Jun 1 2005 1:33PM"
如何将以下字符串转换为datetime对象?
"Jun 1 2005 1:33PM"
当前回答
In [34]: import datetime
In [35]: _now = datetime.datetime.now()
In [36]: _now
Out[36]: datetime.datetime(2016, 1, 19, 9, 47, 0, 432000)
In [37]: print _now
2016-01-19 09:47:00.432000
In [38]: _parsed = datetime.datetime.strptime(str(_now),"%Y-%m-%d %H:%M:%S.%f")
In [39]: _parsed
Out[39]: datetime.datetime(2016, 1, 19, 9, 47, 0, 432000)
In [40]: assert _now == _parsed
其他回答
许多时间戳都有一个隐含的时区。为了确保您的代码在每个时区都有效,您应该在内部使用UTC,并在每次外来对象进入系统时附加一个时区。
Python 3.2+:
>>> datetime.datetime.strptime(
... "March 5, 2014, 20:13:50", "%B %d, %Y, %H:%M:%S"
... ).replace(tzinfo=datetime.timezone(datetime.timedelta(hours=-3)))
这假设您知道偏移量。如果您不知道,但您知道例如位置,您可以使用pytz包查询IANA时区数据库中的偏移量。我将在这里以德黑兰为例,因为它有半小时的偏移量:
>>> tehran = pytz.timezone("Asia/Tehran")
>>> local_time = tehran.localize(
... datetime.datetime.strptime("March 5, 2014, 20:13:50",
... "%B %d, %Y, %H:%M:%S")
... )
>>> local_time
datetime.datetime(2014, 3, 5, 20, 13, 50, tzinfo=<DstTzInfo 'Asia/Tehran' +0330+3:30:00 STD>)
如您所见,pytz已确定在特定日期的偏移量为+3:30。您现在可以将其转换为UTC时间,它将应用偏移量:
>>> utc_time = local_time.astimezone(pytz.utc)
>>> utc_time
datetime.datetime(2014, 3, 5, 16, 43, 50, tzinfo=<UTC>)
请注意,采用时区之前的日期会给您带来奇怪的偏移。这是因为IANA决定使用本地平均时间:
>>> chicago = pytz.timezone("America/Chicago")
>>> weird_time = chicago.localize(
... datetime.datetime.strptime("November 18, 1883, 11:00:00",
... "%B %d, %Y, %H:%M:%S")
... )
>>> weird_time.astimezone(pytz.utc)
datetime.datetime(1883, 11, 18, 7, 34, tzinfo=<UTC>)
奇怪的“7小时34分钟”源自芝加哥的经度。我使用这个时间戳是因为它正好在芝加哥采用标准时间之前。
记住这一点,您不需要再次在日期时间转换中感到困惑。
日期时间对象字符串=strptime
datetime对象转换为其他格式=strftime
2005年6月1日下午1:33
等于
%b%d%Y%I:%M%p
%b月作为区域设置的缩写名称(Jun)%d月份的日期,以零填充的小数(1)表示%Y年,以世纪为小数(2015年)%I小时(12小时时钟)为零填充小数(01)%M分钟作为零填充十进制数字(33)%p Locale相当于AM或PM(PM)
所以您需要strptime i-e将字符串转换为
>>> dates = []
>>> dates.append('Jun 1 2005 1:33PM')
>>> dates.append('Aug 28 1999 12:00AM')
>>> from datetime import datetime
>>> for d in dates:
... date = datetime.strptime(d, '%b %d %Y %I:%M%p')
... print type(date)
... print date
...
输出
<type 'datetime.datetime'>
2005-06-01 13:33:00
<type 'datetime.datetime'>
1999-08-28 00:00:00
如果您有不同的日期格式,您可以使用panda或dateutil.parse
>>> import dateutil
>>> dates = []
>>> dates.append('12 1 2017')
>>> dates.append('1 1 2017')
>>> dates.append('1 12 2017')
>>> dates.append('June 1 2017 1:30:00AM')
>>> [parser.parse(x) for x in dates]
输出
[datetime.datetime(2017, 12, 1, 0, 0), datetime.datetime(2017, 1, 1, 0, 0), datetime.datetime(2017, 1, 12, 0, 0), datetime.datetime(2017, 6, 1, 1, 30)]
#Convert String to datetime
>>> x=datetime.strptime('Jun 1 2005', '%b %d %Y').date()
>>> print(x,type(x))
2005-06-01 00:00:00 <class 'datetime.datetime'>
#Convert datetime to String (Reverse above process)
>>> y=x.strftime('%b %d %Y')
>>> print(y,type(y))
Jun 01 2005 <class 'str'>
我已经完成了一个项目,可以转换一些非常整洁的表达式。查看时间字符串。
以下是一些示例:
pip install timestring
>>> import timestring
>>> timestring.Date('monday, aug 15th 2015 at 8:40 pm')
<timestring.Date 2015-08-15 20:40:00 4491909392>
>>> timestring.Date('monday, aug 15th 2015 at 8:40 pm').date
datetime.datetime(2015, 8, 15, 20, 40)
>>> timestring.Range('next week')
<timestring.Range From 03/10/14 00:00:00 to 03/03/14 00:00:00 4496004880>
>>> (timestring.Range('next week').start.date, timestring.Range('next week').end.date)
(datetime.datetime(2014, 3, 10, 0, 0), datetime.datetime(2014, 3, 14, 0, 0))
使用熊猫时间戳似乎是最快的:
import pandas as pd
N = 1000
l = ['Jun 1 2005 1:33PM'] * N
list(pd.to_datetime(l, format=format))
%timeit _ = list(pd.to_datetime(l, format=format))
1.58 ms ± 21.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
其他解决方案
from datetime import datetime
%timeit _ = list(map(lambda x: datetime.strptime(x, format), l))
9.41 ms ± 95.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
from dateutil.parser import parse
%timeit _ = list(map(lambda x: parse(x), l))
73.8 ms ± 1.14 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
如果字符串是ISO 8601字符串,请使用csio8601:
import ciso8601
l = ['2014-01-09'] * N
%timeit _ = list(map(lambda x: ciso8601.parse_datetime(x), l))
186 µs ± 4.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)