我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:

df:

A     B   C
1000  10  0.5
765   5   0.35
800   7   0.09

知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?

我想要的输出是:

A     B    C
1     1    1
0.765 0.5  0.7
0.8   0.7  0.18(which is 0.09/0.5)

当前回答

我认为在熊猫身上更好的方法是

df = df/df.max().astype(np.float64)

如果在你的数据帧中出现负数,你应该用负数代替

df = df/df.loc[df.abs().idxmax()].astype(np.float64)

其他回答

基于这篇文章:https://stats.stackexchange.com/questions/70801/how-to-normalize-data-to-0-1-range

您可以执行以下操作:

def normalize(df):
    result = df.copy()
    for feature_name in df.columns:
        max_value = df[feature_name].max()
        min_value = df[feature_name].min()
        result[feature_name] = (df[feature_name] - min_value) / (max_value - min_value)
    return result

你不需要一直担心你的价值观是积极的还是消极的。这些值应该很好地分布在0和1之间。

注意这个答案,因为它只适用于范围为[0,n]的数据。这对任何范围的数据都不起作用。


简单就是美:

df["A"] = df["A"] / df["A"].max()
df["B"] = df["B"] / df["B"].max()
df["C"] = df["C"] / df["C"].max()

睡魔和普拉文给出的解决方案很好。唯一的问题是,如果你在数据帧的其他列中有分类变量,这种方法将需要一些调整。

我对这类问题的解决方案如下:

 from sklearn import preprocesing
 x = pd.concat([df.Numerical1, df.Numerical2,df.Numerical3])
 min_max_scaler = preprocessing.MinMaxScaler()
 x_scaled = min_max_scaler.fit_transform(x)
 x_new = pd.DataFrame(x_scaled)
 df = pd.concat([df.Categoricals,x_new])

如果你喜欢使用sklearn包,你可以像这样使用pandas loc来保持列名和索引名:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler() 
scaled_values = scaler.fit_transform(df) 
df.loc[:,:] = scaled_values

这是你如何使用列表推导式来做的:

[df[col].update((df[col] - df[col].min()) / (df[col].max() - df[col].min())) for col in df.columns]