我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:

df:

A     B   C
1000  10  0.5
765   5   0.35
800   7   0.09

知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?

我想要的输出是:

A     B    C
1     1    1
0.765 0.5  0.7
0.8   0.7  0.18(which is 0.09/0.5)

当前回答

要规范化一个DataFrame列,只使用本机Python。

不同的值会影响过程,例如图的颜色。

0到1之间:

min_val = min(list(df['col']))
max_val = max(list(df['col']))
df['col'] = [(x - min_val) / max_val for x in df['col']]

-1 ~ 1:

df['col'] = [float(i)/sum(df['col']) for i in df['col']]

OR

df['col'] = [float(tp) / max(abs(df['col'])) for tp in df['col']]

其他回答

使用Pandas的一个简单方法:(这里我想使用均值归一化)

normalized_df=(df-df.mean())/df.std()

使用最小-最大归一化:

normalized_df=(df-df.min())/(df.max()-df.min())

编辑:为了解决一些问题,需要说明Pandas在上面的代码中自动应用列函数。

你可以在一行中完成

DF_test = DF_test.sub(DF_test.mean(axis=0), axis=1)/DF_test.mean(axis=0)

它取每一列的平均值,然后从每一行中减去它(平均值)(特定列的平均值仅从该行中减去),然后仅除以平均值。最后,我们得到的是规范化的数据集。

注意这个答案,因为它只适用于范围为[0,n]的数据。这对任何范围的数据都不起作用。


简单就是美:

df["A"] = df["A"] / df["A"].max()
df["B"] = df["B"] / df["B"].max()
df["C"] = df["C"] / df["C"].max()

睡魔和普拉文给出的解决方案很好。唯一的问题是,如果你在数据帧的其他列中有分类变量,这种方法将需要一些调整。

我对这类问题的解决方案如下:

 from sklearn import preprocesing
 x = pd.concat([df.Numerical1, df.Numerical2,df.Numerical3])
 min_max_scaler = preprocessing.MinMaxScaler()
 x_scaled = min_max_scaler.fit_transform(x)
 x_new = pd.DataFrame(x_scaled)
 df = pd.concat([df.Categoricals,x_new])
df_normalized = df / df.max(axis=0)