背景
我刚刚把我的熊猫从0.11升级到0.13.0rc1。现在,应用程序弹出了许多新的警告。其中一个是这样的:
E:\FinReporter\FM_EXT.py:449: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
quote_df['TVol'] = quote_df['TVol']/TVOL_SCALE
我想知道这到底是什么意思?我需要改变什么吗?
如果我坚持使用quote_df['TVol'] = quote_df['TVol']/TVOL_SCALE,我应该如何暂停警告?
给出错误的函数
def _decode_stock_quote(list_of_150_stk_str):
"""decode the webpage and return dataframe"""
from cStringIO import StringIO
str_of_all = "".join(list_of_150_stk_str)
quote_df = pd.read_csv(StringIO(str_of_all), sep=',', names=list('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefg')) #dtype={'A': object, 'B': object, 'C': np.float64}
quote_df.rename(columns={'A':'STK', 'B':'TOpen', 'C':'TPCLOSE', 'D':'TPrice', 'E':'THigh', 'F':'TLow', 'I':'TVol', 'J':'TAmt', 'e':'TDate', 'f':'TTime'}, inplace=True)
quote_df = quote_df.ix[:,[0,3,2,1,4,5,8,9,30,31]]
quote_df['TClose'] = quote_df['TPrice']
quote_df['RT'] = 100 * (quote_df['TPrice']/quote_df['TPCLOSE'] - 1)
quote_df['TVol'] = quote_df['TVol']/TVOL_SCALE
quote_df['TAmt'] = quote_df['TAmt']/TAMT_SCALE
quote_df['STK_ID'] = quote_df['STK'].str.slice(13,19)
quote_df['STK_Name'] = quote_df['STK'].str.slice(21,30)#.decode('gb2312')
quote_df['TDate'] = quote_df.TDate.map(lambda x: x[0:4]+x[5:7]+x[8:10])
return quote_df
更多错误消息
E:\FinReporter\FM_EXT.py:449: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
quote_df['TVol'] = quote_df['TVol']/TVOL_SCALE
E:\FinReporter\FM_EXT.py:450: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
quote_df['TAmt'] = quote_df['TAmt']/TAMT_SCALE
E:\FinReporter\FM_EXT.py:453: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
quote_df['TDate'] = quote_df.TDate.map(lambda x: x[0:4]+x[5:7]+x[8:10])
这里我直接回答这个问题。我们该如何应对呢?
在切片后创建.copy(deep=False)。看到pandas.DataFrame.copy。
等等,切片不是会返回副本吗?毕竟,这就是警告信息试图表达的意思?阅读长答案:
import pandas as pd
df = pd.DataFrame({'x':[1,2,3]})
这给出了一个警告:
df0 = df[df.x>2]
df0['foo'] = 'bar'
这不是:
df1 = df[df.x>2].copy(deep=False)
df1['foo'] = 'bar'
df0和df1都是DataFrame对象,但它们的某些不同之处使pandas能够打印警告。让我们来看看它是什么。
import inspect
slice= df[df.x>2]
slice_copy = df[df.x>2].copy(deep=False)
inspect.getmembers(slice)
inspect.getmembers(slice_copy)
使用你选择的diff工具,你会发现除了几个地址之外,唯一的实质性区别是:
| | slice | slice_copy |
| _is_copy | weakref | None |
决定是否警告的方法是DataFrame。_check_setitem_copy检查_is_copy。给你。做一个拷贝,这样你的DataFrame就不是_is_copy。
警告建议使用.loc,但如果您在_is_copy的帧上使用.loc,仍然会得到相同的警告。误导?是的。烦人吗?你的赌注。有用吗?可能,当使用链式赋值时。但是它不能正确地检测链赋值,并且不加区别地输出警告。
为了消除任何疑问,我的解决方案是对切片进行深度复制,而不是常规复制。
这可能不适用,这取决于你的上下文(内存限制/片的大小,潜在的性能下降-特别是如果复制发生在一个循环中,就像它对我做的那样,等等…)
澄清一下,以下是我收到的警告:
/opt/anaconda3/lib/python3.6/site-packages/ipykernel/__main__.py:54:
SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
插图
我怀疑警告之所以被抛出,是因为我在切片的副本上放置了一列。虽然从技术上讲没有尝试在切片的副本中设置值,但这仍然是对切片副本的修改。
以下是我所采取的(简化的)步骤来确认怀疑,我希望它能帮助那些试图理解警告的人。
例1:删除原始数据上的一列会影响副本
我们已经知道了,但这是一个健康的提醒。这不是警告的内容。
>> data1 = {'A': [111, 112, 113], 'B':[121, 122, 123]}
>> df1 = pd.DataFrame(data1)
>> df1
A B
0 111 121
1 112 122
2 113 123
>> df2 = df1
>> df2
A B
0 111 121
1 112 122
2 113 123
# Dropping a column on df1 affects df2
>> df1.drop('A', axis=1, inplace=True)
>> df2
B
0 121
1 122
2 123
可以避免在df1上所做的更改影响df2。注意:你可以通过执行df.copy()来避免导入copy.deepcopy。
>> data1 = {'A': [111, 112, 113], 'B':[121, 122, 123]}
>> df1 = pd.DataFrame(data1)
>> df1
A B
0 111 121
1 112 122
2 113 123
>> import copy
>> df2 = copy.deepcopy(df1)
>> df2
A B
0 111 121
1 112 122
2 113 123
# Dropping a column on df1 does not affect df2
>> df1.drop('A', axis=1, inplace=True)
>> df2
A B
0 111 121
1 112 122
2 113 123
例2:删除副本上的一列可能会影响原始数据
这实际上说明了警告。
>> data1 = {'A': [111, 112, 113], 'B':[121, 122, 123]}
>> df1 = pd.DataFrame(data1)
>> df1
A B
0 111 121
1 112 122
2 113 123
>> df2 = df1
>> df2
A B
0 111 121
1 112 122
2 113 123
# Dropping a column on df2 can affect df1
# No slice involved here, but I believe the principle remains the same?
# Let me know if not
>> df2.drop('A', axis=1, inplace=True)
>> df1
B
0 121
1 122
2 123
可以避免在df2上所做的更改影响df1
>> data1 = {'A': [111, 112, 113], 'B':[121, 122, 123]}
>> df1 = pd.DataFrame(data1)
>> df1
A B
0 111 121
1 112 122
2 113 123
>> import copy
>> df2 = copy.deepcopy(df1)
>> df2
A B
0 111 121
1 112 122
2 113 123
>> df2.drop('A', axis=1, inplace=True)
>> df1
A B
0 111 121
1 112 122
2 113 123
一般来说,SettingWithCopyWarning的目的是向用户(尤其是新用户)表明,他们可能正在对一个副本进行操作,而不是他们所认为的原始版本。有假阳性(低,如果你知道你在做什么,它可能是好的)。一种可能是像@Garrett建议的那样关闭警告(默认为warn)。
这是另一种选择:
In [1]: df = DataFrame(np.random.randn(5, 2), columns=list('AB'))
In [2]: dfa = df.ix[:, [1, 0]]
In [3]: dfa.is_copy
Out[3]: True
In [4]: dfa['A'] /= 2
/usr/local/bin/ipython:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
#!/usr/local/bin/python
你可以将is_copy标志设置为False,这将有效地关闭该对象的检查:
In [5]: dfa.is_copy = False
In [6]: dfa['A'] /= 2
如果显式复制,则不会发生进一步的警告:
In [7]: dfa = df.ix[:, [1, 0]].copy()
In [8]: dfa['A'] /= 2
上面OP显示的代码虽然是合法的,而且可能也是我所做的,但从技术上讲,它是这个警告的一个案例,而不是误报。另一种没有警告的方法是通过重新索引来执行选择操作,例如:
quote_df = quote_df.reindex(columns=['STK', ...])
Or,
quote_df = quote_df.reindex(['STK', ...], axis=1) # v.0.21