在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。

如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。

以下是一些例子(为了便于展示,进行了排序):

median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2

当前回答

简单地说,创建一个中值函数,参数为数字列表,并调用该函数。

def median(l):
    l = sorted(l)
    lent = len(l)
    if (lent % 2) == 0:
        m = int(lent / 2)
        result = l[m]
    else:
        m = int(float(lent / 2) - 0.5)
        result = l[m]
    return result

其他回答

下面是不使用中值函数就能找到中值的乏味方法:

def median(*arg):
    order(arg)
    numArg = len(arg)
    half = int(numArg/2)
    if numArg/2 ==half:
        print((arg[half-1]+arg[half])/2)
    else:
        print(int(arg[half]))

def order(tup):
    ordered = [tup[i] for i in range(len(tup))]
    test(ordered)
    while(test(ordered)):
        test(ordered)
    print(ordered)


def test(ordered):
    whileloop = 0 
    for i in range(len(ordered)-1):
        print(i)
        if (ordered[i]>ordered[i+1]):
            print(str(ordered[i]) + ' is greater than ' + str(ordered[i+1]))
            original = ordered[i+1]
            ordered[i+1]=ordered[i]
            ordered[i]=original
            whileloop = 1 #run the loop again if you had to switch values
    return whileloop

我在浮点值列表中遇到了一些问题。我最终使用了来自python3统计数据的代码片段。中位数和工作完美的浮动值没有导入。源

def calculateMedian(list):
    data = sorted(list)
    n = len(data)
    if n == 0:
        return None
    if n % 2 == 1:
        return data[n // 2]
    else:
        i = n // 2
        return (data[i - 1] + data[i]) / 2

函数值:

def median(d):
    d=np.sort(d)
    n2=int(len(d)/2)
    r=n2%2
    if (r==0):
        med=d[n2] 
    else:
        med=(d[n2] + d[n2+1]) / 2
    return med

我在“中位数的中位数”算法的Python实现中发布了我的解决方案,这比使用sort()稍微快一点。我的解决方案每列使用15个数字,速度~5N比每列使用5个数字的速度~10N快。最佳速度是~4N,但我可能是错的。

根据Tom在评论中的要求,我在这里添加了我的代码,以供参考。我认为速度的关键部分是每列使用15个数字,而不是5个。

#!/bin/pypy
#
# TH @stackoverflow, 2016-01-20, linear time "median of medians" algorithm
#
import sys, random


items_per_column = 15


def find_i_th_smallest( A, i ):
    t = len(A)
    if(t <= items_per_column):
        # if A is a small list with less than items_per_column items, then:
        #
        # 1. do sort on A
        # 2. find i-th smallest item of A
        #
        return sorted(A)[i]
    else:
        # 1. partition A into columns of k items each. k is odd, say 5.
        # 2. find the median of every column
        # 3. put all medians in a new list, say, B
        #
        B = [ find_i_th_smallest(k, (len(k) - 1)/2) for k in [A[j:(j + items_per_column)] for j in range(0,len(A),items_per_column)]]

        # 4. find M, the median of B
        #
        M = find_i_th_smallest(B, (len(B) - 1)/2)


        # 5. split A into 3 parts by M, { < M }, { == M }, and { > M }
        # 6. find which above set has A's i-th smallest, recursively.
        #
        P1 = [ j for j in A if j < M ]
        if(i < len(P1)):
            return find_i_th_smallest( P1, i)
        P3 = [ j for j in A if j > M ]
        L3 = len(P3)
        if(i < (t - L3)):
            return M
        return find_i_th_smallest( P3, i - (t - L3))


# How many numbers should be randomly generated for testing?
#
number_of_numbers = int(sys.argv[1])


# create a list of random positive integers
#
L = [ random.randint(0, number_of_numbers) for i in range(0, number_of_numbers) ]


# Show the original list
#
# print L


# This is for validation
#
# print sorted(L)[int((len(L) - 1)/2)]


# This is the result of the "median of medians" function.
# Its result should be the same as the above.
#
print find_i_th_smallest( L, (len(L) - 1) / 2)

试试这个

import math
def find_median(arr):
    if len(arr)%2==1:
        med=math.ceil(len(arr)/2)-1
        return arr[med]
    else:
        return -1
print(find_median([1,2,3,4,5,6,7,8]))