在Python中如何找到列表的中值?列表可以是任意大小的,并且数字不保证是任何特定的顺序。

如果列表包含偶数个元素,则函数应返回中间两个元素的平均值。

以下是一些例子(为了便于展示,进行了排序):

median([1]) == 1
median([1, 1]) == 1
median([1, 1, 2, 4]) == 1.5
median([0, 2, 5, 6, 8, 9, 9]) == 6
median([0, 0, 0, 0, 4, 4, 6, 8]) == 2

当前回答

更普遍的中位数(和百分位数)方法是:

def get_percentile(data, percentile):
    # Get the number of observations
    cnt=len(data)
    # Sort the list
    data=sorted(data)
    # Determine the split point
    i=(cnt-1)*percentile
    # Find the `floor` of the split point
    diff=i-int(i)
    # Return the weighted average of the value above and below the split point
    return data[int(i)]*(1-diff)+data[int(i)+1]*(diff)

# Data
data=[1,2,3,4,5]
# For the median
print(get_percentile(data=data, percentile=.50))
# > 3
print(get_percentile(data=data, percentile=.75))
# > 4

# Note the weighted average difference when an int is not returned by the percentile
print(get_percentile(data=data, percentile=.51))
# > 3.04

其他回答

实现它:

def median(numbers):
    """
    Calculate median of a list numbers.
    :param numbers: the numbers to be calculated.
    :return: median value of numbers.

    >>> median([1, 3, 3, 6, 7, 8, 9])
    6
    >>> median([1, 2, 3, 4, 5, 6, 8, 9])
    4.5
    >>> import statistics
    >>> import random
    >>> numbers = random.sample(range(-50, 50), k=100)
    >>> statistics.median(numbers) == median(numbers)
    True
    """
    numbers = sorted(numbers)
    mid_index = len(numbers) // 2
    return (
        (numbers[mid_index] + numbers[mid_index - 1]) / 2 if mid_index % 2 == 0
        else numbers[mid_index]
    )


if __name__ == "__main__":
    from doctest import testmod

    testmod()

来源

def median(array):
    if len(array) < 1:
        return(None)
    if len(array) % 2 == 0:
        median = (array[len(array)//2-1: len(array)//2+1])
        return sum(median) / len(median)
    else:
        return(array[len(array)//2])

(适用于python-2.x):

def median(lst):
    n = len(lst)
    s = sorted(lst)
    return (s[n//2-1]/2.0+s[n//2]/2.0, s[n//2])[n % 2] if n else None

>>> median([-5, -5, -3, -4, 0, -1])
-3.5

numpy.median ():

>>> from numpy import median
>>> median([1, -4, -1, -1, 1, -3])
-1.0

python 3。X,使用statistics.median:

>>> from statistics import median
>>> median([5, 2, 3, 8, 9, -2])
4.0

如果您需要关于列表分布的额外信息,百分位数方法可能会很有用。中位数对应于列表的第50个百分位数:

import numpy as np
a = np.array([1,2,3,4,5,6,7,8,9])
median_value = np.percentile(a, 50) # return 50th percentile
print median_value 

这里有一个更干净的解决方案:

def median(lst):
    quotient, remainder = divmod(len(lst), 2)
    if remainder:
        return sorted(lst)[quotient]
    return sum(sorted(lst)[quotient - 1:quotient + 1]) / 2.

注:答案更改为在评论中加入建议。