我想在一个数据帧列中计算NA值的数量。假设我的数据帧称为df,我正在考虑的列的名称是col。我提出的方法如下:

sapply(df$col, function(x) sum(length(which(is.na(x)))))  

这是一个好的/最有效的方法吗?


当前回答

一种统计数据帧中每一列空值的方法:

library(tidyverse)
library(purrr)

df %>%
    map_df(function(x) sum(is.na(x))) %>%
    gather(feature, num_nulls) %>%
    print(n = 100)

其他回答

为了保证完整性,你也可以在table中使用useNA参数。例如table(df$col, useNA="always")将统计所有非NA的情况和NA的情况。

类似于hute37的答案,但使用了purrr包。我认为这种tidyverse方法比AbiK提出的答案更简单。

library(purrr)
map_dbl(df, ~sum(is.na(.)))

注意:波浪号(~)创建一个匿名函数。还有'。’指的是匿名函数的输入,在本例中为data.frame df。

如果你在每一列中寻找空值,然后一个接一个地打印,那么你可以使用这个。简单的解决方案。

lapply(df, function(x) { length(which(is.na(x)))})

一种统计数据帧中每一列空值的方法:

library(tidyverse)
library(purrr)

df %>%
    map_df(function(x) sum(is.na(x))) %>%
    gather(feature, num_nulls) %>%
    print(n = 100)

这个表格与凯文·奥戈洛斯的表格略有不同:

na_count <-function (x) sapply(x, function(y) sum(is.na(y)))

返回命名为int数组的NA计数