假设你有一本这样的字典:

{'a': 1,
 'c': {'a': 2,
       'b': {'x': 5,
             'y' : 10}},
 'd': [1, 2, 3]}

你会如何把它平摊成这样:

{'a': 1,
 'c_a': 2,
 'c_b_x': 5,
 'c_b_y': 10,
 'd': [1, 2, 3]}

当前回答

利用递归,保持简单和人类可读:

def flatten_dict(dictionary, accumulator=None, parent_key=None, separator="."):
    if accumulator is None:
        accumulator = {}

    for k, v in dictionary.items():
        k = f"{parent_key}{separator}{k}" if parent_key else k
        if isinstance(v, dict):
            flatten_dict(dictionary=v, accumulator=accumulator, parent_key=k)
            continue

        accumulator[k] = v

    return accumulator

调用很简单:

new_dict = flatten_dict(dictionary)

or

new_dict = flatten_dict(dictionary, separator="_")

如果我们想改变默认分隔符。

稍微分解一下:

当函数第一次被调用时,它只被调用传递我们想要扁平化的字典。这里的累加器参数支持递归,稍后我们将看到。因此,我们将accumulator实例化到一个空字典中,我们将在其中放入原始字典中的所有嵌套值。

if accumulator is None:
    accumulator = {}

当我们遍历字典的值时,我们为每个值构造一个键。对于第一次调用,parent_key参数将为None,而对于每个嵌套字典,它将包含指向它的键,因此我们将该键前置。

k = f"{parent_key}{separator}{k}" if parent_key else k

如果键k指向的值v是一个字典,函数调用自身,传递嵌套的字典、累加器(通过引用传递,因此对它的所有更改都是在同一个实例上完成的)和键k,这样我们就可以构造连接键。注意continue语句。我们想要跳过if语句块之外的下一行,这样嵌套的字典就不会在键k下的累加器中结束。

if isinstance(v, dict):
    flatten_dict(dict=v, accumulator=accumulator, parent_key=k)
    continue

那么,如果值v不是字典,我们该怎么办呢?把它原封不动地放在累加器里。

accumulator[k] = v

一旦完成,我们只返回累加器,原始的字典参数保持不变。

NOTE

这只适用于有字符串作为键的字典。它将与实现__repr__方法的哈希对象一起工作,但将产生不想要的结果。

其他回答

这是一种“功能性的”、“单行程序”实现。它是递归的,基于条件表达式和字典理解。

def flatten_dict(dd, separator='_', prefix=''):
    return { prefix + separator + k if prefix else k : v
             for kk, vv in dd.items()
             for k, v in flatten_dict(vv, separator, kk).items()
             } if isinstance(dd, dict) else { prefix : dd }

测试:

In [2]: flatten_dict({'abc':123, 'hgf':{'gh':432, 'yu':433}, 'gfd':902, 'xzxzxz':{"432":{'0b0b0b':231}, "43234":1321}}, '.')
Out[2]: 
{'abc': 123,
 'gfd': 902,
 'hgf.gh': 432,
 'hgf.yu': 433,
 'xzxzxz.432.0b0b0b': 231,
 'xzxzxz.43234': 1321}

基本上与平铺嵌套列表的方法相同,您只需要做额外的工作,按键/值迭代字典,为新字典创建新键,并在最后一步创建字典。

import collections

def flatten(d, parent_key='', sep='_'):
    items = []
    for k, v in d.items():
        new_key = parent_key + sep + k if parent_key else k
        if isinstance(v, collections.MutableMapping):
            items.extend(flatten(v, new_key, sep=sep).items())
        else:
            items.append((new_key, v))
    return dict(items)

>>> flatten({'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]})
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}

对于Python >= 3.3,将导入更改为from collections。abc导入MutableMapping以避免弃用警告和更改集合。MutableMapping变成MutableMapping。

这与imran和ralu的回答相似。它不使用生成器,而是使用闭包的递归:

def flatten_dict(d, separator='_'):
  final = {}
  def _flatten_dict(obj, parent_keys=[]):
    for k, v in obj.iteritems():
      if isinstance(v, dict):
        _flatten_dict(v, parent_keys + [k])
      else:
        key = separator.join(parent_keys + [k])
        final[key] = v
  _flatten_dict(d)
  return final

>>> print flatten_dict({'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]})
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}

实际上,我最近写了一个名为cherrypicker的包来处理这种确切的事情,因为我必须经常这样做!

我认为下面的代码会给你你想要的东西:

from cherrypicker import CherryPicker

dct = {
    'a': 1,
    'c': {
        'a': 2,
        'b': {
            'x': 5,
            'y' : 10
        }
    },
    'd': [1, 2, 3]
}

picker = CherryPicker(dct)
picker.flatten().get()

您可以使用以下方法安装软件包:

pip install cherrypicker

...在https://cherrypicker.readthedocs.io上有更多的文档和指导。

其他方法可能更快,但这个包的优先级是使这些任务变得容易。如果你确实有一个很大的对象列表要扁平化,你也可以告诉CherryPicker使用并行处理来加快速度。

使用生成器的Python 3.3解决方案:

def flattenit(pyobj, keystring=''):
   if type(pyobj) is dict:
     if (type(pyobj) is dict):
         keystring = keystring + "_" if keystring else keystring
         for k in pyobj:
             yield from flattenit(pyobj[k], keystring + k)
     elif (type(pyobj) is list):
         for lelm in pyobj:
             yield from flatten(lelm, keystring)
   else:
      yield keystring, pyobj

my_obj = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y': 10}}, 'd': [1, 2, 3]}

#your flattened dictionary object
flattened={k:v for k,v in flattenit(my_obj)}
print(flattened)

# result: {'c_b_y': 10, 'd': [1, 2, 3], 'c_a': 2, 'a': 1, 'c_b_x': 5}