假设你有一本这样的字典:
{'a': 1,
'c': {'a': 2,
'b': {'x': 5,
'y' : 10}},
'd': [1, 2, 3]}
你会如何把它平摊成这样:
{'a': 1,
'c_a': 2,
'c_b_x': 5,
'c_b_y': 10,
'd': [1, 2, 3]}
假设你有一本这样的字典:
{'a': 1,
'c': {'a': 2,
'b': {'x': 5,
'y' : 10}},
'd': [1, 2, 3]}
你会如何把它平摊成这样:
{'a': 1,
'c_a': 2,
'c_b_x': 5,
'c_b_y': 10,
'd': [1, 2, 3]}
当前回答
利用递归,保持简单和人类可读:
def flatten_dict(dictionary, accumulator=None, parent_key=None, separator="."):
if accumulator is None:
accumulator = {}
for k, v in dictionary.items():
k = f"{parent_key}{separator}{k}" if parent_key else k
if isinstance(v, dict):
flatten_dict(dictionary=v, accumulator=accumulator, parent_key=k)
continue
accumulator[k] = v
return accumulator
调用很简单:
new_dict = flatten_dict(dictionary)
or
new_dict = flatten_dict(dictionary, separator="_")
如果我们想改变默认分隔符。
稍微分解一下:
当函数第一次被调用时,它只被调用传递我们想要扁平化的字典。这里的累加器参数支持递归,稍后我们将看到。因此,我们将accumulator实例化到一个空字典中,我们将在其中放入原始字典中的所有嵌套值。
if accumulator is None:
accumulator = {}
当我们遍历字典的值时,我们为每个值构造一个键。对于第一次调用,parent_key参数将为None,而对于每个嵌套字典,它将包含指向它的键,因此我们将该键前置。
k = f"{parent_key}{separator}{k}" if parent_key else k
如果键k指向的值v是一个字典,函数调用自身,传递嵌套的字典、累加器(通过引用传递,因此对它的所有更改都是在同一个实例上完成的)和键k,这样我们就可以构造连接键。注意continue语句。我们想要跳过if语句块之外的下一行,这样嵌套的字典就不会在键k下的累加器中结束。
if isinstance(v, dict):
flatten_dict(dict=v, accumulator=accumulator, parent_key=k)
continue
那么,如果值v不是字典,我们该怎么办呢?把它原封不动地放在累加器里。
accumulator[k] = v
一旦完成,我们只返回累加器,原始的字典参数保持不变。
NOTE
这只适用于有字符串作为键的字典。它将与实现__repr__方法的哈希对象一起工作,但将产生不想要的结果。
其他回答
这是一种“功能性的”、“单行程序”实现。它是递归的,基于条件表达式和字典理解。
def flatten_dict(dd, separator='_', prefix=''):
return { prefix + separator + k if prefix else k : v
for kk, vv in dd.items()
for k, v in flatten_dict(vv, separator, kk).items()
} if isinstance(dd, dict) else { prefix : dd }
测试:
In [2]: flatten_dict({'abc':123, 'hgf':{'gh':432, 'yu':433}, 'gfd':902, 'xzxzxz':{"432":{'0b0b0b':231}, "43234":1321}}, '.')
Out[2]:
{'abc': 123,
'gfd': 902,
'hgf.gh': 432,
'hgf.yu': 433,
'xzxzxz.432.0b0b0b': 231,
'xzxzxz.43234': 1321}
基本上与平铺嵌套列表的方法相同,您只需要做额外的工作,按键/值迭代字典,为新字典创建新键,并在最后一步创建字典。
import collections
def flatten(d, parent_key='', sep='_'):
items = []
for k, v in d.items():
new_key = parent_key + sep + k if parent_key else k
if isinstance(v, collections.MutableMapping):
items.extend(flatten(v, new_key, sep=sep).items())
else:
items.append((new_key, v))
return dict(items)
>>> flatten({'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]})
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}
对于Python >= 3.3,将导入更改为from collections。abc导入MutableMapping以避免弃用警告和更改集合。MutableMapping变成MutableMapping。
如果你使用pandas,有一个函数隐藏在pandas.io.json中。_normalize1调用nested_to_record来完成这个操作。
from pandas.io.json._normalize import nested_to_record
flat = nested_to_record(my_dict, sep='_')
1在熊猫0.24版本。X及以上版本使用panda .io.json.normalize(不带_)
我尝试了本页上的一些解决方案-虽然不是全部-但我尝试的那些都无法处理dict的嵌套列表。
考虑这样一个词典:
d = {
'owner': {
'name': {'first_name': 'Steven', 'last_name': 'Smith'},
'lottery_nums': [1, 2, 3, 'four', '11', None],
'address': {},
'tuple': (1, 2, 'three'),
'tuple_with_dict': (1, 2, 'three', {'is_valid': False}),
'set': {1, 2, 3, 4, 'five'},
'children': [
{'name': {'first_name': 'Jessica',
'last_name': 'Smith', },
'children': []
},
{'name': {'first_name': 'George',
'last_name': 'Smith'},
'children': []
}
]
}
}
以下是我的临时解决方案:
def flatten_dict(input_node: dict, key_: str = '', output_dict: dict = {}):
if isinstance(input_node, dict):
for key, val in input_node.items():
new_key = f"{key_}.{key}" if key_ else f"{key}"
flatten_dict(val, new_key, output_dict)
elif isinstance(input_node, list):
for idx, item in enumerate(input_node):
flatten_dict(item, f"{key_}.{idx}", output_dict)
else:
output_dict[key_] = input_node
return output_dict
生产:
{
owner.name.first_name: Steven,
owner.name.last_name: Smith,
owner.lottery_nums.0: 1,
owner.lottery_nums.1: 2,
owner.lottery_nums.2: 3,
owner.lottery_nums.3: four,
owner.lottery_nums.4: 11,
owner.lottery_nums.5: None,
owner.tuple: (1, 2, 'three'),
owner.tuple_with_dict: (1, 2, 'three', {'is_valid': False}),
owner.set: {1, 2, 3, 4, 'five'},
owner.children.0.name.first_name: Jessica,
owner.children.0.name.last_name: Smith,
owner.children.1.name.first_name: George,
owner.children.1.name.last_name: Smith,
}
一个临时的解决方案,但并不完美。 注意:
它不保留空字典,例如地址:{}k/v对。 它不会将嵌套元组中的字典平铺——尽管使用python元组类似于列表的事实很容易添加它。
我总是喜欢通过.items()访问字典对象,所以为了平抑字典,我使用下面的递归生成器flat_items(d)。如果你想再次使用dict,只需像这样简单地包装它:flat = dict(flat_items(d))
def flat_items(d, key_separator='.'):
"""
Flattens the dictionary containing other dictionaries like here: https://stackoverflow.com/questions/6027558/flatten-nested-python-dictionaries-compressing-keys
>>> example = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]}
>>> flat = dict(flat_items(example, key_separator='_'))
>>> assert flat['c_b_y'] == 10
"""
for k, v in d.items():
if type(v) is dict:
for k1, v1 in flat_items(v, key_separator=key_separator):
yield key_separator.join((k, k1)), v1
else:
yield k, v