假设你有一本这样的字典:

{'a': 1,
 'c': {'a': 2,
       'b': {'x': 5,
             'y' : 10}},
 'd': [1, 2, 3]}

你会如何把它平摊成这样:

{'a': 1,
 'c_a': 2,
 'c_b_x': 5,
 'c_b_y': 10,
 'd': [1, 2, 3]}

当前回答

使用生成器的Python 3.3解决方案:

def flattenit(pyobj, keystring=''):
   if type(pyobj) is dict:
     if (type(pyobj) is dict):
         keystring = keystring + "_" if keystring else keystring
         for k in pyobj:
             yield from flattenit(pyobj[k], keystring + k)
     elif (type(pyobj) is list):
         for lelm in pyobj:
             yield from flatten(lelm, keystring)
   else:
      yield keystring, pyobj

my_obj = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y': 10}}, 'd': [1, 2, 3]}

#your flattened dictionary object
flattened={k:v for k,v in flattenit(my_obj)}
print(flattened)

# result: {'c_b_y': 10, 'd': [1, 2, 3], 'c_a': 2, 'a': 1, 'c_b_x': 5}

其他回答

在Python3.5中提供功能和性能的解决方案如何?

from functools import reduce


def _reducer(items, key, val, pref):
    if isinstance(val, dict):
        return {**items, **flatten(val, pref + key)}
    else:
        return {**items, pref + key: val}

def flatten(d, pref=''):
    return(reduce(
        lambda new_d, kv: _reducer(new_d, *kv, pref), 
        d.items(), 
        {}
    ))

这是更有表现力的:

def flatten(d, pref=''):
    return(reduce(
        lambda new_d, kv: \
            isinstance(kv[1], dict) and \
            {**new_d, **flatten(kv[1], pref + kv[0])} or \
            {**new_d, pref + kv[0]: kv[1]}, 
        d.items(), 
        {}
    ))

在使用:

my_obj = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y': 10}}, 'd': [1, 2, 3]}

print(flatten(my_obj)) 
# {'d': [1, 2, 3], 'cby': 10, 'cbx': 5, 'ca': 2, 'a': 1}
def flatten(dictionary, prefix = '', separator = '_'):
    out_dict = {}
    if type(dictionary) != dict:
        out_dict[prefix] = dictionary
        return out_dict
    elif dictionary is None:
        return None
    for k in dictionary.keys():
        if prefix:
            prefix_n = prefix + f'{separator}{k}'
        else:
            prefix_n = k
        out_dict.update(flatten_new(dictionary[k], prefix_n))
    return out_dict

输出:

{'a': 1, 'c_a': 2, 'c_b_x': 5, 'c_b_y': 10, 'd': [1, 2, 3]}

如果你使用pandas,有一个函数隐藏在pandas.io.json中。_normalize1调用nested_to_record来完成这个操作。

from pandas.io.json._normalize import nested_to_record    

flat = nested_to_record(my_dict, sep='_')

1在熊猫0.24版本。X及以上版本使用panda .io.json.normalize(不带_)

使用dict.popitem()在直接的嵌套列表类递归中:

def flatten(d):
    if d == {}:
        return d
    else:
        k,v = d.popitem()
        if (dict != type(v)):
            return {k:v, **flatten(d)}
        else:
            flat_kv = flatten(v)
            for k1 in list(flat_kv.keys()):
                flat_kv[k + '_' + k1] = flat_kv[k1]
                del flat_kv[k1]
            return {**flat_kv, **flatten(d)}
def flatten(unflattened_dict, separator='_'):
    flattened_dict = {}

    for k, v in unflattened_dict.items():
        if isinstance(v, dict):
            sub_flattened_dict = flatten(v, separator)
            for k2, v2 in sub_flattened_dict.items():
                flattened_dict[k + separator + k2] = v2
        else:
            flattened_dict[k] = v

    return flattened_dict