假设你有一本这样的字典:
{'a': 1,
'c': {'a': 2,
'b': {'x': 5,
'y' : 10}},
'd': [1, 2, 3]}
你会如何把它平摊成这样:
{'a': 1,
'c_a': 2,
'c_b_x': 5,
'c_b_y': 10,
'd': [1, 2, 3]}
假设你有一本这样的字典:
{'a': 1,
'c': {'a': 2,
'b': {'x': 5,
'y' : 10}},
'd': [1, 2, 3]}
你会如何把它平摊成这样:
{'a': 1,
'c_a': 2,
'c_b_x': 5,
'c_b_y': 10,
'd': [1, 2, 3]}
当前回答
使用dict.popitem()在直接的嵌套列表类递归中:
def flatten(d):
if d == {}:
return d
else:
k,v = d.popitem()
if (dict != type(v)):
return {k:v, **flatten(d)}
else:
flat_kv = flatten(v)
for k1 in list(flat_kv.keys()):
flat_kv[k + '_' + k1] = flat_kv[k1]
del flat_kv[k1]
return {**flat_kv, **flatten(d)}
其他回答
我尝试了本页上的一些解决方案-虽然不是全部-但我尝试的那些都无法处理dict的嵌套列表。
考虑这样一个词典:
d = {
'owner': {
'name': {'first_name': 'Steven', 'last_name': 'Smith'},
'lottery_nums': [1, 2, 3, 'four', '11', None],
'address': {},
'tuple': (1, 2, 'three'),
'tuple_with_dict': (1, 2, 'three', {'is_valid': False}),
'set': {1, 2, 3, 4, 'five'},
'children': [
{'name': {'first_name': 'Jessica',
'last_name': 'Smith', },
'children': []
},
{'name': {'first_name': 'George',
'last_name': 'Smith'},
'children': []
}
]
}
}
以下是我的临时解决方案:
def flatten_dict(input_node: dict, key_: str = '', output_dict: dict = {}):
if isinstance(input_node, dict):
for key, val in input_node.items():
new_key = f"{key_}.{key}" if key_ else f"{key}"
flatten_dict(val, new_key, output_dict)
elif isinstance(input_node, list):
for idx, item in enumerate(input_node):
flatten_dict(item, f"{key_}.{idx}", output_dict)
else:
output_dict[key_] = input_node
return output_dict
生产:
{
owner.name.first_name: Steven,
owner.name.last_name: Smith,
owner.lottery_nums.0: 1,
owner.lottery_nums.1: 2,
owner.lottery_nums.2: 3,
owner.lottery_nums.3: four,
owner.lottery_nums.4: 11,
owner.lottery_nums.5: None,
owner.tuple: (1, 2, 'three'),
owner.tuple_with_dict: (1, 2, 'three', {'is_valid': False}),
owner.set: {1, 2, 3, 4, 'five'},
owner.children.0.name.first_name: Jessica,
owner.children.0.name.last_name: Smith,
owner.children.1.name.first_name: George,
owner.children.1.name.last_name: Smith,
}
一个临时的解决方案,但并不完美。 注意:
它不保留空字典,例如地址:{}k/v对。 它不会将嵌套元组中的字典平铺——尽管使用python元组类似于列表的事实很容易添加它。
这不完全是OP所要求的,但很多人都来这里寻找方法来平坦现实世界的嵌套JSON数据,这些数据可以有嵌套的键值JSON对象和数组,数组内的JSON对象等等。JSON不包括元组,所以我们不必担心这些。
我找到了@roneo对@Imran发布的答案的列表包含评论的实现:
https://github.com/ScriptSmith/socialreaper/blob/master/socialreaper/tools.py#L8
import collections
def flatten(dictionary, parent_key=False, separator='.'):
"""
Turn a nested dictionary into a flattened dictionary
:param dictionary: The dictionary to flatten
:param parent_key: The string to prepend to dictionary's keys
:param separator: The string used to separate flattened keys
:return: A flattened dictionary
"""
items = []
for key, value in dictionary.items():
new_key = str(parent_key) + separator + key if parent_key else key
if isinstance(value, collections.MutableMapping):
items.extend(flatten(value, new_key, separator).items())
elif isinstance(value, list):
for k, v in enumerate(value):
items.extend(flatten({str(k): v}, new_key).items())
else:
items.append((new_key, value))
return dict(items)
测试:
flatten({'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3] })
>> {'a': 1, 'c.a': 2, 'c.b.x': 5, 'c.b.y': 10, 'd.0': 1, 'd.1': 2, 'd.2': 3}
这做的工作,我需要做:我扔任何复杂的json在这,它为我扁平化。
所有学分发送至https://github.com/ScriptSmith。
使用生成器的Python 3.3解决方案:
def flattenit(pyobj, keystring=''):
if type(pyobj) is dict:
if (type(pyobj) is dict):
keystring = keystring + "_" if keystring else keystring
for k in pyobj:
yield from flattenit(pyobj[k], keystring + k)
elif (type(pyobj) is list):
for lelm in pyobj:
yield from flatten(lelm, keystring)
else:
yield keystring, pyobj
my_obj = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y': 10}}, 'd': [1, 2, 3]}
#your flattened dictionary object
flattened={k:v for k,v in flattenit(my_obj)}
print(flattened)
# result: {'c_b_y': 10, 'd': [1, 2, 3], 'c_a': 2, 'a': 1, 'c_b_x': 5}
利用递归,保持简单和人类可读:
def flatten_dict(dictionary, accumulator=None, parent_key=None, separator="."):
if accumulator is None:
accumulator = {}
for k, v in dictionary.items():
k = f"{parent_key}{separator}{k}" if parent_key else k
if isinstance(v, dict):
flatten_dict(dictionary=v, accumulator=accumulator, parent_key=k)
continue
accumulator[k] = v
return accumulator
调用很简单:
new_dict = flatten_dict(dictionary)
or
new_dict = flatten_dict(dictionary, separator="_")
如果我们想改变默认分隔符。
稍微分解一下:
当函数第一次被调用时,它只被调用传递我们想要扁平化的字典。这里的累加器参数支持递归,稍后我们将看到。因此,我们将accumulator实例化到一个空字典中,我们将在其中放入原始字典中的所有嵌套值。
if accumulator is None:
accumulator = {}
当我们遍历字典的值时,我们为每个值构造一个键。对于第一次调用,parent_key参数将为None,而对于每个嵌套字典,它将包含指向它的键,因此我们将该键前置。
k = f"{parent_key}{separator}{k}" if parent_key else k
如果键k指向的值v是一个字典,函数调用自身,传递嵌套的字典、累加器(通过引用传递,因此对它的所有更改都是在同一个实例上完成的)和键k,这样我们就可以构造连接键。注意continue语句。我们想要跳过if语句块之外的下一行,这样嵌套的字典就不会在键k下的累加器中结束。
if isinstance(v, dict):
flatten_dict(dict=v, accumulator=accumulator, parent_key=k)
continue
那么,如果值v不是字典,我们该怎么办呢?把它原封不动地放在累加器里。
accumulator[k] = v
一旦完成,我们只返回累加器,原始的字典参数保持不变。
NOTE
这只适用于有字符串作为键的字典。它将与实现__repr__方法的哈希对象一起工作,但将产生不想要的结果。
实际上,我最近写了一个名为cherrypicker的包来处理这种确切的事情,因为我必须经常这样做!
我认为下面的代码会给你你想要的东西:
from cherrypicker import CherryPicker
dct = {
'a': 1,
'c': {
'a': 2,
'b': {
'x': 5,
'y' : 10
}
},
'd': [1, 2, 3]
}
picker = CherryPicker(dct)
picker.flatten().get()
您可以使用以下方法安装软件包:
pip install cherrypicker
...在https://cherrypicker.readthedocs.io上有更多的文档和指导。
其他方法可能更快,但这个包的优先级是使这些任务变得容易。如果你确实有一个很大的对象列表要扁平化,你也可以告诉CherryPicker使用并行处理来加快速度。