假设你有一本这样的字典:

{'a': 1,
 'c': {'a': 2,
       'b': {'x': 5,
             'y' : 10}},
 'd': [1, 2, 3]}

你会如何把它平摊成这样:

{'a': 1,
 'c_a': 2,
 'c_b_x': 5,
 'c_b_y': 10,
 'd': [1, 2, 3]}

当前回答

def flatten(unflattened_dict, separator='_'):
    flattened_dict = {}

    for k, v in unflattened_dict.items():
        if isinstance(v, dict):
            sub_flattened_dict = flatten(v, separator)
            for k2, v2 in sub_flattened_dict.items():
                flattened_dict[k + separator + k2] = v2
        else:
            flattened_dict[k] = v

    return flattened_dict

其他回答

基本上与平铺嵌套列表的方法相同,您只需要做额外的工作,按键/值迭代字典,为新字典创建新键,并在最后一步创建字典。

import collections

def flatten(d, parent_key='', sep='_'):
    items = []
    for k, v in d.items():
        new_key = parent_key + sep + k if parent_key else k
        if isinstance(v, collections.MutableMapping):
            items.extend(flatten(v, new_key, sep=sep).items())
        else:
            items.append((new_key, v))
    return dict(items)

>>> flatten({'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]})
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}

对于Python >= 3.3,将导入更改为from collections。abc导入MutableMapping以避免弃用警告和更改集合。MutableMapping变成MutableMapping。

def flatten_nested_dict(_dict, _str=''):
    '''
    recursive function to flatten a nested dictionary json
    '''
    ret_dict = {}
    for k, v in _dict.items():
        if isinstance(v, dict):
            ret_dict.update(flatten_nested_dict(v, _str = '_'.join([_str, k]).strip('_')))
        elif isinstance(v, list):
            for index, item in enumerate(v):
                if isinstance(item, dict):
                    ret_dict.update(flatten_nested_dict(item,  _str= '_'.join([_str, k, str(index)]).strip('_')))
                else:
                    ret_dict['_'.join([_str, k, str(index)]).strip('_')] = item
        else:
            ret_dict['_'.join([_str, k]).strip('_')] = v
    return ret_dict

如果你不介意递归函数,这里有一个解决方案。我还冒昧地包含了一个排除参数,以防您希望维护一个或多个值。

代码:

def flatten_dict(dictionary, exclude = [], delimiter ='_'):
    flat_dict = dict()
    for key, value in dictionary.items():
        if isinstance(value, dict) and key not in exclude:
            flatten_value_dict = flatten_dict(value, exclude, delimiter)
            for k, v in flatten_value_dict.items():
                flat_dict[f"{key}{delimiter}{k}"] = v
        else:
            flat_dict[key] = value
    return flat_dict

用法:

d = {'a':1, 'b':[1, 2], 'c':3, 'd':{'a':4, 'b':{'a':7, 'b':8}, 'c':6}, 'e':{'a':1,'b':2}}
flat_d = flatten_dict(dictionary=d, exclude=['e'], delimiter='.')
print(flat_d)

输出:

{'a': 1, 'b': [1, 2], 'c': 3, 'd.a': 4, 'd.b.a': 7, 'd.b.b': 8, 'd.c': 6, 'e': {'a': 1, 'b': 2}}

这一变化扁平化嵌套字典,压缩键与max_level和自定义减速器。

  def flatten(d, max_level=None, reducer='tuple'):
      if reducer == 'tuple':
          reducer_seed = tuple()
          reducer_func = lambda x, y: (*x, y)
      else:
          raise ValueError(f'Unknown reducer: {reducer}')

      def impl(d, pref, level):
        return reduce(
            lambda new_d, kv:
                (max_level is None or level < max_level)
                and isinstance(kv[1], dict)
                and {**new_d, **impl(kv[1], reducer_func(pref, kv[0]), level + 1)}
                or {**new_d, reducer_func(pref, kv[0]): kv[1]},
                d.items(),
            {}
        )

      return impl(d, reducer_seed, 0)

如果你使用pandas,有一个函数隐藏在pandas.io.json中。_normalize1调用nested_to_record来完成这个操作。

from pandas.io.json._normalize import nested_to_record    

flat = nested_to_record(my_dict, sep='_')

1在熊猫0.24版本。X及以上版本使用panda .io.json.normalize(不带_)