假设你有一本这样的字典:

{'a': 1,
 'c': {'a': 2,
       'b': {'x': 5,
             'y' : 10}},
 'd': [1, 2, 3]}

你会如何把它平摊成这样:

{'a': 1,
 'c_a': 2,
 'c_b_x': 5,
 'c_b_y': 10,
 'd': [1, 2, 3]}

当前回答

或者如果你已经在使用pandas,你可以像这样使用json_normalize():

import pandas as pd

d = {'a': 1,
     'c': {'a': 2, 'b': {'x': 5, 'y' : 10}},
     'd': [1, 2, 3]}

df = pd.json_normalize(d, sep='_')

print(df.to_dict(orient='records')[0])

输出:

{'a': 1, 'c_a': 2, 'c_b_x': 5, 'c_b_y': 10, 'd': [1, 2, 3]}

其他回答

这一变化扁平化嵌套字典,压缩键与max_level和自定义减速器。

  def flatten(d, max_level=None, reducer='tuple'):
      if reducer == 'tuple':
          reducer_seed = tuple()
          reducer_func = lambda x, y: (*x, y)
      else:
          raise ValueError(f'Unknown reducer: {reducer}')

      def impl(d, pref, level):
        return reduce(
            lambda new_d, kv:
                (max_level is None or level < max_level)
                and isinstance(kv[1], dict)
                and {**new_d, **impl(kv[1], reducer_func(pref, kv[0]), level + 1)}
                or {**new_d, reducer_func(pref, kv[0]): kv[1]},
                d.items(),
            {}
        )

      return impl(d, reducer_seed, 0)

上面的答案真的很管用。我只是想加上我写的unflatten函数:

def unflatten(d):
    ud = {}
    for k, v in d.items():
        context = ud
        for sub_key in k.split('_')[:-1]:
            if sub_key not in context:
                context[sub_key] = {}
            context = context[sub_key]
        context[k.split('_')[-1]] = v
    return ud

注意:这并没有解释键中已经存在的'_',就像扁平化的对应物一样。

def flatten_nested_dict(_dict, _str=''):
    '''
    recursive function to flatten a nested dictionary json
    '''
    ret_dict = {}
    for k, v in _dict.items():
        if isinstance(v, dict):
            ret_dict.update(flatten_nested_dict(v, _str = '_'.join([_str, k]).strip('_')))
        elif isinstance(v, list):
            for index, item in enumerate(v):
                if isinstance(item, dict):
                    ret_dict.update(flatten_nested_dict(item,  _str= '_'.join([_str, k, str(index)]).strip('_')))
                else:
                    ret_dict['_'.join([_str, k, str(index)]).strip('_')] = item
        else:
            ret_dict['_'.join([_str, k]).strip('_')] = v
    return ret_dict

基本上与平铺嵌套列表的方法相同,您只需要做额外的工作,按键/值迭代字典,为新字典创建新键,并在最后一步创建字典。

import collections

def flatten(d, parent_key='', sep='_'):
    items = []
    for k, v in d.items():
        new_key = parent_key + sep + k if parent_key else k
        if isinstance(v, collections.MutableMapping):
            items.extend(flatten(v, new_key, sep=sep).items())
        else:
            items.append((new_key, v))
    return dict(items)

>>> flatten({'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]})
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}

对于Python >= 3.3,将导入更改为from collections。abc导入MutableMapping以避免弃用警告和更改集合。MutableMapping变成MutableMapping。

def flatten(dictionary, prefix = '', separator = '_'):
    out_dict = {}
    if type(dictionary) != dict:
        out_dict[prefix] = dictionary
        return out_dict
    elif dictionary is None:
        return None
    for k in dictionary.keys():
        if prefix:
            prefix_n = prefix + f'{separator}{k}'
        else:
            prefix_n = k
        out_dict.update(flatten_new(dictionary[k], prefix_n))
    return out_dict

输出:

{'a': 1, 'c_a': 2, 'c_b_x': 5, 'c_b_y': 10, 'd': [1, 2, 3]}