假设你有一本这样的字典:

{'a': 1,
 'c': {'a': 2,
       'b': {'x': 5,
             'y' : 10}},
 'd': [1, 2, 3]}

你会如何把它平摊成这样:

{'a': 1,
 'c_a': 2,
 'c_b_x': 5,
 'c_b_y': 10,
 'd': [1, 2, 3]}

当前回答

我正在考虑UserDict的一个子类来自动神奇地平键。

class FlatDict(UserDict):
    def __init__(self, *args, separator='.', **kwargs):
        self.separator = separator
        super().__init__(*args, **kwargs)

    def __setitem__(self, key, value):
        if isinstance(value, dict):
            for k1, v1 in FlatDict(value, separator=self.separator).items():
                super().__setitem__(f"{key}{self.separator}{k1}", v1)
        else:
            super().__setitem__(key, value)

‌ 优点是键可以动态添加,或者使用标准字典实例化,毫无疑问:

>>> fd = FlatDict(
...    {
...        'person': {
...            'sexe': 'male', 
...            'name': {
...                'first': 'jacques',
...                'last': 'dupond'
...            }
...        }
...    }
... )
>>> fd
{'person.sexe': 'male', 'person.name.first': 'jacques', 'person.name.last': 'dupond'}
>>> fd['person'] = {'name': {'nickname': 'Bob'}}
>>> fd
{'person.sexe': 'male', 'person.name.first': 'jacques', 'person.name.last': 'dupond', 'person.name.nickname': 'Bob'}
>>> fd['person.name'] = {'civility': 'Dr'}
>>> fd
{'person.sexe': 'male', 'person.name.first': 'jacques', 'person.name.last': 'dupond', 'person.name.nickname': 'Bob', 'person.name.civility': 'Dr'}

其他回答

基本上与平铺嵌套列表的方法相同,您只需要做额外的工作,按键/值迭代字典,为新字典创建新键,并在最后一步创建字典。

import collections

def flatten(d, parent_key='', sep='_'):
    items = []
    for k, v in d.items():
        new_key = parent_key + sep + k if parent_key else k
        if isinstance(v, collections.MutableMapping):
            items.extend(flatten(v, new_key, sep=sep).items())
        else:
            items.append((new_key, v))
    return dict(items)

>>> flatten({'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]})
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}

对于Python >= 3.3,将导入更改为from collections。abc导入MutableMapping以避免弃用警告和更改集合。MutableMapping变成MutableMapping。

代码:

test = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]}

def parse_dict(init, lkey=''):
    ret = {}
    for rkey,val in init.items():
        key = lkey+rkey
        if isinstance(val, dict):
            ret.update(parse_dict(val, key+'_'))
        else:
            ret[key] = val
    return ret

print(parse_dict(test,''))

结果:

$ python test.py
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}

我使用python3.2,更新为您的python版本。

我总是喜欢通过.items()访问字典对象,所以为了平抑字典,我使用下面的递归生成器flat_items(d)。如果你想再次使用dict,只需像这样简单地包装它:flat = dict(flat_items(d))

def flat_items(d, key_separator='.'):
    """
    Flattens the dictionary containing other dictionaries like here: https://stackoverflow.com/questions/6027558/flatten-nested-python-dictionaries-compressing-keys

    >>> example = {'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]}
    >>> flat = dict(flat_items(example, key_separator='_'))
    >>> assert flat['c_b_y'] == 10
    """
    for k, v in d.items():
        if type(v) is dict:
            for k1, v1 in flat_items(v, key_separator=key_separator):
                yield key_separator.join((k, k1)), v1
        else:
            yield k, v

这里有一个优雅的、就地替换的算法。使用Python 2.7和Python 3.5进行测试。使用点字符作为分隔符。

def flatten_json(json):
    if type(json) == dict:
        for k, v in list(json.items()):
            if type(v) == dict:
                flatten_json(v)
                json.pop(k)
                for k2, v2 in v.items():
                    json[k+"."+k2] = v2

例子:

d = {'a': {'b': 'c'}}                   
flatten_json(d)
print(d)
unflatten_json(d)
print(d)

输出:

{'a.b': 'c'}
{'a': {'b': 'c'}}

我在这里发布了这段代码以及匹配的unflat_json函数。

使用dict.popitem()在直接的嵌套列表类递归中:

def flatten(d):
    if d == {}:
        return d
    else:
        k,v = d.popitem()
        if (dict != type(v)):
            return {k:v, **flatten(d)}
        else:
            flat_kv = flatten(v)
            for k1 in list(flat_kv.keys()):
                flat_kv[k + '_' + k1] = flat_kv[k1]
                del flat_kv[k1]
            return {**flat_kv, **flatten(d)}