我如何在Java中打印一个二叉树,这样输出就像:

   4 
  / \ 
 2   5 

我的节点:

public class Node<A extends Comparable> {
    Node<A> left, right;
    A data;

    public Node(A data){
        this.data = data;
    }
}

当前回答

这是水平视图最简单的解决方案。我举了很多例子。很适合我的目的。更新自@ ntin -k的回答。

public void print(String prefix, BTNode n, boolean isLeft) {
    if (n != null) {
        print(prefix + "     ", n.right, false);
        System.out.println (prefix + ("|-- ") + n.data);
        print(prefix + "     ", n.left, true);
    }
}

电话:

bst.print("", bst.root, false);

解决方案:

                         |-- 80
                    |-- 70
               |-- 60
          |-- 50
     |-- 40
|-- 30
     |-- 20
          |-- 10

其他回答

你的树每一层需要两倍的距离:

       a
      / \
     /   \
    /     \
   /       \
   b       c
  / \     / \
 /   \   /   \
 d   e   f   g
/ \ / \ / \ / \
h i j k l m n o

你可以将你的树保存在一个数组的数组中,每个数组对应一个深度:

[[a],[b,c],[d,e,f,g],[h,i,j,k,l,m,n,o]]

如果你的树没有满,你需要在数组中包含空值:

       a
      / \
     /   \
    /     \
   /       \
   b       c
  / \     / \
 /   \   /   \
 d   e   f   g
/ \   \ / \   \
h i   k l m   o
[[a],[b,c],[d,e,f,g],[h,i, ,k,l,m, ,o]]

然后你可以遍历数组来打印你的树,根据深度打印第一个元素之前和元素之间的空格,根据下一层数组中对应的元素是否被填充打印行。 如果您的值可以超过一个字符长,您需要在创建数组表示时找到最长的值,并相应地乘以所有宽度和行数。

我发现VasyaNovikov的答案对于打印大型通用树非常有用,并将其修改为二叉树

代码:

class TreeNode {
    Integer data = null;
    TreeNode left = null;
    TreeNode right = null;

    TreeNode(Integer data) {this.data = data;}

    public void print() {
        print("", this, false);
    }

    public void print(String prefix, TreeNode n, boolean isLeft) {
        if (n != null) {
            System.out.println (prefix + (isLeft ? "|-- " : "\\-- ") + n.data);
            print(prefix + (isLeft ? "|   " : "    "), n.left, true);
            print(prefix + (isLeft ? "|   " : "    "), n.right, false);
        }
    }
}

样例输出:

\-- 7
    |-- 3
    |   |-- 1
    |   |   \-- 2
    |   \-- 5
    |       |-- 4
    |       \-- 6
    \-- 11
        |-- 9
        |   |-- 8
        |   \-- 10
        \-- 13
            |-- 12
            \-- 14

我已经创建了简单的二叉树打印机。您可以随心所欲地使用和修改它,但无论如何它都没有优化。我认为这里有很多东西可以改进;)

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class BTreePrinterTest {

    private static Node<Integer> test1() {
        Node<Integer> root = new Node<Integer>(2);
        Node<Integer> n11 = new Node<Integer>(7);
        Node<Integer> n12 = new Node<Integer>(5);
        Node<Integer> n21 = new Node<Integer>(2);
        Node<Integer> n22 = new Node<Integer>(6);
        Node<Integer> n23 = new Node<Integer>(3);
        Node<Integer> n24 = new Node<Integer>(6);
        Node<Integer> n31 = new Node<Integer>(5);
        Node<Integer> n32 = new Node<Integer>(8);
        Node<Integer> n33 = new Node<Integer>(4);
        Node<Integer> n34 = new Node<Integer>(5);
        Node<Integer> n35 = new Node<Integer>(8);
        Node<Integer> n36 = new Node<Integer>(4);
        Node<Integer> n37 = new Node<Integer>(5);
        Node<Integer> n38 = new Node<Integer>(8);

        root.left = n11;
        root.right = n12;

        n11.left = n21;
        n11.right = n22;
        n12.left = n23;
        n12.right = n24;

        n21.left = n31;
        n21.right = n32;
        n22.left = n33;
        n22.right = n34;
        n23.left = n35;
        n23.right = n36;
        n24.left = n37;
        n24.right = n38;

        return root;
    }

    private static Node<Integer> test2() {
        Node<Integer> root = new Node<Integer>(2);
        Node<Integer> n11 = new Node<Integer>(7);
        Node<Integer> n12 = new Node<Integer>(5);
        Node<Integer> n21 = new Node<Integer>(2);
        Node<Integer> n22 = new Node<Integer>(6);
        Node<Integer> n23 = new Node<Integer>(9);
        Node<Integer> n31 = new Node<Integer>(5);
        Node<Integer> n32 = new Node<Integer>(8);
        Node<Integer> n33 = new Node<Integer>(4);

        root.left = n11;
        root.right = n12;

        n11.left = n21;
        n11.right = n22;

        n12.right = n23;
        n22.left = n31;
        n22.right = n32;

        n23.left = n33;

        return root;
    }

    public static void main(String[] args) {

        BTreePrinter.printNode(test1());
        BTreePrinter.printNode(test2());

    }
}

class Node<T extends Comparable<?>> {
    Node<T> left, right;
    T data;

    public Node(T data) {
        this.data = data;
    }
}

class BTreePrinter {

    public static <T extends Comparable<?>> void printNode(Node<T> root) {
        int maxLevel = BTreePrinter.maxLevel(root);

        printNodeInternal(Collections.singletonList(root), 1, maxLevel);
    }

    private static <T extends Comparable<?>> void printNodeInternal(List<Node<T>> nodes, int level, int maxLevel) {
        if (nodes.isEmpty() || BTreePrinter.isAllElementsNull(nodes))
            return;

        int floor = maxLevel - level;
        int endgeLines = (int) Math.pow(2, (Math.max(floor - 1, 0)));
        int firstSpaces = (int) Math.pow(2, (floor)) - 1;
        int betweenSpaces = (int) Math.pow(2, (floor + 1)) - 1;

        BTreePrinter.printWhitespaces(firstSpaces);

        List<Node<T>> newNodes = new ArrayList<Node<T>>();
        for (Node<T> node : nodes) {
            if (node != null) {
                System.out.print(node.data);
                newNodes.add(node.left);
                newNodes.add(node.right);
            } else {
                newNodes.add(null);
                newNodes.add(null);
                System.out.print(" ");
            }

            BTreePrinter.printWhitespaces(betweenSpaces);
        }
        System.out.println("");

        for (int i = 1; i <= endgeLines; i++) {
            for (int j = 0; j < nodes.size(); j++) {
                BTreePrinter.printWhitespaces(firstSpaces - i);
                if (nodes.get(j) == null) {
                    BTreePrinter.printWhitespaces(endgeLines + endgeLines + i + 1);
                    continue;
                }

                if (nodes.get(j).left != null)
                    System.out.print("/");
                else
                    BTreePrinter.printWhitespaces(1);

                BTreePrinter.printWhitespaces(i + i - 1);

                if (nodes.get(j).right != null)
                    System.out.print("\\");
                else
                    BTreePrinter.printWhitespaces(1);

                BTreePrinter.printWhitespaces(endgeLines + endgeLines - i);
            }

            System.out.println("");
        }

        printNodeInternal(newNodes, level + 1, maxLevel);
    }

    private static void printWhitespaces(int count) {
        for (int i = 0; i < count; i++)
            System.out.print(" ");
    }

    private static <T extends Comparable<?>> int maxLevel(Node<T> node) {
        if (node == null)
            return 0;

        return Math.max(BTreePrinter.maxLevel(node.left), BTreePrinter.maxLevel(node.right)) + 1;
    }

    private static <T> boolean isAllElementsNull(List<T> list) {
        for (Object object : list) {
            if (object != null)
                return false;
        }

        return true;
    }

}

输出1:

         2               
        / \       
       /   \      
      /     \     
     /       \    
     7       5       
    / \     / \   
   /   \   /   \  
   2   6   3   6   
  / \ / \ / \ / \ 
  5 8 4 5 8 4 5 8 

输出2:

       2               
      / \       
     /   \      
    /     \     
   /       \    
   7       5       
  / \       \   
 /   \       \  
 2   6       9   
    / \     /   
    5 8     4   

这是水平视图最简单的解决方案。我举了很多例子。很适合我的目的。更新自@ ntin -k的回答。

public void print(String prefix, BTNode n, boolean isLeft) {
    if (n != null) {
        print(prefix + "     ", n.right, false);
        System.out.println (prefix + ("|-- ") + n.data);
        print(prefix + "     ", n.left, true);
    }
}

电话:

bst.print("", bst.root, false);

解决方案:

                         |-- 80
                    |-- 70
               |-- 60
          |-- 50
     |-- 40
|-- 30
     |-- 20
          |-- 10

试试这个:

public static void print(int[] minHeap, int minWidth) {

    int size = minHeap.length;

    int level = log2(size);
    int maxLength = (int) Math.pow(2, level) * minWidth;
    int currentLevel = -1 ;
    int width = maxLength;

    for (int i = 0; i < size; i++) {
        if (log2(i + 1) > currentLevel) {
            currentLevel++;
            System.out.println();
            width = maxLength / (int) Math.pow(2, currentLevel);
        }
        System.out.print(StringUtils.center(String.valueOf(minHeap[i]), width));
    }
    System.out.println();
}

private static int log2(int n) {
    return (int) (Math.log(n) / Math.log(2));
}

这段代码片段的思想是用maxLength(即底线的长度)除以每一行的元素数量来得到块宽度。然后把元素放在每个块的中间。

参数minWidth表示底部行中块的长度。

用一张图片来说明想法并展示结果。