我如何在Java中打印一个二叉树,这样输出就像:
4
/ \
2 5
我的节点:
public class Node<A extends Comparable> {
Node<A> left, right;
A data;
public Node(A data){
this.data = data;
}
}
我如何在Java中打印一个二叉树,这样输出就像:
4
/ \
2 5
我的节点:
public class Node<A extends Comparable> {
Node<A> left, right;
A data;
public Node(A data){
this.data = data;
}
}
当前回答
这是水平视图最简单的解决方案。我举了很多例子。很适合我的目的。更新自@ ntin -k的回答。
public void print(String prefix, BTNode n, boolean isLeft) {
if (n != null) {
print(prefix + " ", n.right, false);
System.out.println (prefix + ("|-- ") + n.data);
print(prefix + " ", n.left, true);
}
}
电话:
bst.print("", bst.root, false);
解决方案:
|-- 80
|-- 70
|-- 60
|-- 50
|-- 40
|-- 30
|-- 20
|-- 10
其他回答
迈克尔。克鲁兹曼,我不得不说,这人不错。这很有用。
然而,上面的方法只适用于个位数:如果您要使用多个数字,结构将会错位,因为您使用的是空格而不是制表符。
至于我后来的代码,我需要更多的数字,所以我自己编写了一个程序。
它现在有一些bug,现在我感觉很懒去纠正它们,但它打印得非常漂亮,节点可以接受更大数量的数字。
这棵树不会像问题提到的那样,但它旋转了270度:)
public static void printBinaryTree(TreeNode root, int level){
if(root==null)
return;
printBinaryTree(root.right, level+1);
if(level!=0){
for(int i=0;i<level-1;i++)
System.out.print("|\t");
System.out.println("|-------"+root.val);
}
else
System.out.println(root.val);
printBinaryTree(root.left, level+1);
}
将此函数与您自己指定的TreeNode一起放置,并保持初始级别为0,并享受!
以下是一些输出示例:
| | |-------11
| |-------10
| | |-------9
|-------8
| | |-------7
| |-------6
| | |-------5
4
| |-------3
|-------2
| |-------1
| | | |-------10
| | |-------9
| |-------8
| | |-------7
|-------6
| |-------5
4
| |-------3
|-------2
| |-------1
唯一的问题是延伸的分支;我会尽快解决这个问题,但在此之前你也可以使用它。
这是打印树的一个非常简单的解决方案。它不是那么漂亮,但它真的很简单:
enum { kWidth = 6 };
void PrintSpace(int n)
{
for (int i = 0; i < n; ++i)
printf(" ");
}
void PrintTree(struct Node * root, int level)
{
if (!root) return;
PrintTree(root->right, level + 1);
PrintSpace(level * kWidth);
printf("%d", root->data);
PrintTree(root->left, level + 1);
}
样例输出:
106 105 104 103 102 101 100
在控制台打印:
500
700 300
200 400
简单代码:
public int getHeight()
{
if(rootNode == null) return -1;
return getHeight(rootNode);
}
private int getHeight(Node node)
{
if(node == null) return -1;
return Math.max(getHeight(node.left), getHeight(node.right)) + 1;
}
public void printBinaryTree(Node rootNode)
{
Queue<Node> rootsQueue = new LinkedList<Node>();
Queue<Node> levelQueue = new LinkedList<Node>();
levelQueue.add(rootNode);
int treeHeight = getHeight();
int firstNodeGap;
int internalNodeGap;
int copyinternalNodeGap;
while(true)
{
System.out.println("");
internalNodeGap = (int)(Math.pow(2, treeHeight + 1) -1);
copyinternalNodeGap = internalNodeGap;
firstNodeGap = internalNodeGap/2;
boolean levelFirstNode = true;
while(!levelQueue.isEmpty())
{
internalNodeGap = copyinternalNodeGap;
Node currNode = levelQueue.poll();
if(currNode != null)
{
if(levelFirstNode)
{
while(firstNodeGap > 0)
{
System.out.format("%s", " ");
firstNodeGap--;
}
levelFirstNode =false;
}
else
{
while(internalNodeGap>0)
{
internalNodeGap--;
System.out.format("%s", " ");
}
}
System.out.format("%3d",currNode.data);
rootsQueue.add(currNode);
}
}
--treeHeight;
while(!rootsQueue.isEmpty())
{
Node currNode = rootsQueue.poll();
if(currNode != null)
{
levelQueue.add(currNode.left);
levelQueue.add(currNode.right);
}
}
if(levelQueue.isEmpty()) break;
}
}
我为此做了一个改进的算法,可以很好地处理不同大小的节点。它使用行自上而下地打印。
package alg;
import java.util.ArrayList;
import java.util.List;
/**
* Binary tree printer
*
* @author MightyPork
*/
public class TreePrinter
{
/** Node that can be printed */
public interface PrintableNode
{
/** Get left child */
PrintableNode getLeft();
/** Get right child */
PrintableNode getRight();
/** Get text to be printed */
String getText();
}
/**
* Print a tree
*
* @param root
* tree root node
*/
public static void print(PrintableNode root)
{
List<List<String>> lines = new ArrayList<List<String>>();
List<PrintableNode> level = new ArrayList<PrintableNode>();
List<PrintableNode> next = new ArrayList<PrintableNode>();
level.add(root);
int nn = 1;
int widest = 0;
while (nn != 0) {
List<String> line = new ArrayList<String>();
nn = 0;
for (PrintableNode n : level) {
if (n == null) {
line.add(null);
next.add(null);
next.add(null);
} else {
String aa = n.getText();
line.add(aa);
if (aa.length() > widest) widest = aa.length();
next.add(n.getLeft());
next.add(n.getRight());
if (n.getLeft() != null) nn++;
if (n.getRight() != null) nn++;
}
}
if (widest % 2 == 1) widest++;
lines.add(line);
List<PrintableNode> tmp = level;
level = next;
next = tmp;
next.clear();
}
int perpiece = lines.get(lines.size() - 1).size() * (widest + 4);
for (int i = 0; i < lines.size(); i++) {
List<String> line = lines.get(i);
int hpw = (int) Math.floor(perpiece / 2f) - 1;
if (i > 0) {
for (int j = 0; j < line.size(); j++) {
// split node
char c = ' ';
if (j % 2 == 1) {
if (line.get(j - 1) != null) {
c = (line.get(j) != null) ? '┴' : '┘';
} else {
if (j < line.size() && line.get(j) != null) c = '└';
}
}
System.out.print(c);
// lines and spaces
if (line.get(j) == null) {
for (int k = 0; k < perpiece - 1; k++) {
System.out.print(" ");
}
} else {
for (int k = 0; k < hpw; k++) {
System.out.print(j % 2 == 0 ? " " : "─");
}
System.out.print(j % 2 == 0 ? "┌" : "┐");
for (int k = 0; k < hpw; k++) {
System.out.print(j % 2 == 0 ? "─" : " ");
}
}
}
System.out.println();
}
// print line of numbers
for (int j = 0; j < line.size(); j++) {
String f = line.get(j);
if (f == null) f = "";
int gap1 = (int) Math.ceil(perpiece / 2f - f.length() / 2f);
int gap2 = (int) Math.floor(perpiece / 2f - f.length() / 2f);
// a number
for (int k = 0; k < gap1; k++) {
System.out.print(" ");
}
System.out.print(f);
for (int k = 0; k < gap2; k++) {
System.out.print(" ");
}
}
System.out.println();
perpiece /= 2;
}
}
}
要在树中使用它,让Node类实现PrintableNode。
示例输出:
2952:0
┌───────────────────────┴───────────────────────┐
1249:-1 5866:0
┌───────────┴───────────┐ ┌───────────┴───────────┐
491:-1 1572:0 4786:1 6190:0
┌─────┘ └─────┐ ┌─────┴─────┐
339:0 5717:0 6061:0 6271:0
与垂直表示相比,水平表示有点复杂。垂直打印只是简单的RNL(右->节点->左或镜像的顺序)遍历,以便先打印右子树,然后打印左子树。
def printFullTree(root, delim=' ', idnt=[], left=None):
if root:
idnt.append(delim)
x, y = setDelims(left)
printFullTree(root.right, x, idnt, False)
indent2(root.val, idnt)
printFullTree(root.left, y, idnt, True)
idnt.pop()
def setDelims(left):
x = ' '; y='|'
return (y,x) if (left == True) else (x,y) if (left == False) else (x,x)
def indent2(x, idnt, width=6):
for delim in idnt:
print(delim + ' '*(width-1), end='')
print('|->', x)
output:
|-> 15
|-> 14
| |-> 13
|-> 12
| | |-> 11
| |-> 10
| |-> 9
|-> 8
| |-> 7
| |-> 6
| | |-> 4
|-> 3
| |-> 2
|-> 1
|-> 0
在水平表示中,显示由TreeMap的HashMap或HashMap<Integer, TreeMap<Integer, Object>> xy构建;其中HashMap包含节点的y轴/level_no作为Key, TreeMap作为value。Treemap内部保存同一级别的所有节点,按它们的x轴值排序,作为键,从最左端开始-ve,根=0,最右端=+ve。
如果使用自平衡树/Treap,则使用HashMap使算法在每个级别的O(1)查找中工作,并在O(logn)中使用TreeMap排序。
不过,在这样做的时候,不要忘记为空子存储占位符,例如' '/空格,这样树看起来就像预期的那样。
现在唯一剩下的就是计算水平节点的距离,这可以用一些数学计算来完成,
计算树的宽度和高度。 一旦完成,在显示节点时,根据计算的宽度,高度和倾斜信息(如果有的话),以最佳距离呈现它们。