我如何在Java中打印一个二叉树,这样输出就像:

   4 
  / \ 
 2   5 

我的节点:

public class Node<A extends Comparable> {
    Node<A> left, right;
    A data;

    public Node(A data){
        this.data = data;
    }
}

当前回答

我为此做了一个改进的算法,可以很好地处理不同大小的节点。它使用行自上而下地打印。

package alg;

import java.util.ArrayList;
import java.util.List;


/**
 * Binary tree printer
 * 
 * @author MightyPork
 */
public class TreePrinter
{
    /** Node that can be printed */
    public interface PrintableNode
    {
        /** Get left child */
        PrintableNode getLeft();


        /** Get right child */
        PrintableNode getRight();


        /** Get text to be printed */
        String getText();
    }


    /**
     * Print a tree
     * 
     * @param root
     *            tree root node
     */
    public static void print(PrintableNode root)
    {
        List<List<String>> lines = new ArrayList<List<String>>();

        List<PrintableNode> level = new ArrayList<PrintableNode>();
        List<PrintableNode> next = new ArrayList<PrintableNode>();

        level.add(root);
        int nn = 1;

        int widest = 0;

        while (nn != 0) {
            List<String> line = new ArrayList<String>();

            nn = 0;

            for (PrintableNode n : level) {
                if (n == null) {
                    line.add(null);

                    next.add(null);
                    next.add(null);
                } else {
                    String aa = n.getText();
                    line.add(aa);
                    if (aa.length() > widest) widest = aa.length();

                    next.add(n.getLeft());
                    next.add(n.getRight());

                    if (n.getLeft() != null) nn++;
                    if (n.getRight() != null) nn++;
                }
            }

            if (widest % 2 == 1) widest++;

            lines.add(line);

            List<PrintableNode> tmp = level;
            level = next;
            next = tmp;
            next.clear();
        }

        int perpiece = lines.get(lines.size() - 1).size() * (widest + 4);
        for (int i = 0; i < lines.size(); i++) {
            List<String> line = lines.get(i);
            int hpw = (int) Math.floor(perpiece / 2f) - 1;

            if (i > 0) {
                for (int j = 0; j < line.size(); j++) {

                    // split node
                    char c = ' ';
                    if (j % 2 == 1) {
                        if (line.get(j - 1) != null) {
                            c = (line.get(j) != null) ? '┴' : '┘';
                        } else {
                            if (j < line.size() && line.get(j) != null) c = '└';
                        }
                    }
                    System.out.print(c);

                    // lines and spaces
                    if (line.get(j) == null) {
                        for (int k = 0; k < perpiece - 1; k++) {
                            System.out.print(" ");
                        }
                    } else {

                        for (int k = 0; k < hpw; k++) {
                            System.out.print(j % 2 == 0 ? " " : "─");
                        }
                        System.out.print(j % 2 == 0 ? "┌" : "┐");
                        for (int k = 0; k < hpw; k++) {
                            System.out.print(j % 2 == 0 ? "─" : " ");
                        }
                    }
                }
                System.out.println();
            }

            // print line of numbers
            for (int j = 0; j < line.size(); j++) {

                String f = line.get(j);
                if (f == null) f = "";
                int gap1 = (int) Math.ceil(perpiece / 2f - f.length() / 2f);
                int gap2 = (int) Math.floor(perpiece / 2f - f.length() / 2f);

                // a number
                for (int k = 0; k < gap1; k++) {
                    System.out.print(" ");
                }
                System.out.print(f);
                for (int k = 0; k < gap2; k++) {
                    System.out.print(" ");
                }
            }
            System.out.println();

            perpiece /= 2;
        }
    }
}

要在树中使用它,让Node类实现PrintableNode。

示例输出:

                                         2952:0                                             
                    ┌───────────────────────┴───────────────────────┐                       
                 1249:-1                                         5866:0                     
        ┌───────────┴───────────┐                       ┌───────────┴───────────┐           
     491:-1                  1572:0                  4786:1                  6190:0         
  ┌─────┘                                               └─────┐           ┌─────┴─────┐     
339:0                                                      5717:0      6061:0      6271:0   

其他回答

一个Scala解决方案,改编自Vasya Novikov的答案,专门用于二叉树:

/** An immutable Binary Tree. */
case class BTree[T](value: T, left: Option[BTree[T]], right: Option[BTree[T]]) {

  /* Adapted from: http://stackoverflow.com/a/8948691/643684 */
  def pretty: String = {
    def work(tree: BTree[T], prefix: String, isTail: Boolean): String = {
      val (line, bar) = if (isTail) ("└── ", " ") else ("├── ", "│")

      val curr = s"${prefix}${line}${tree.value}"

      val rights = tree.right match {
        case None    => s"${prefix}${bar}   ├── ∅"
        case Some(r) => work(r, s"${prefix}${bar}   ", false)
      }

      val lefts = tree.left match {
        case None    => s"${prefix}${bar}   └── ∅"
        case Some(l) => work(l, s"${prefix}${bar}   ", true)
      }

      s"${curr}\n${rights}\n${lefts}"

    }

    work(this, "", true)
  }
}
public static class Node<T extends Comparable<T>> {
    T value;
    Node<T> left, right;

    public void insertToTree(T v) {
        if (value == null) {
            value = v;
            return;
        }
        if (v.compareTo(value) < 0) {
            if (left == null) {
                left = new Node<T>();
            }
            left.insertToTree(v);
        } else {
            if (right == null) {
                right = new Node<T>();
            }
            right.insertToTree(v);
        }
    }

    public void printTree(OutputStreamWriter out) throws IOException {
        if (right != null) {
            right.printTree(out, true, "");
        }
        printNodeValue(out);
        if (left != null) {
            left.printTree(out, false, "");
        }
    }
    private void printNodeValue(OutputStreamWriter out) throws IOException {
        if (value == null) {
            out.write("<null>");
        } else {
            out.write(value.toString());
        }
        out.write('\n');
    }
    // use string and not stringbuffer on purpose as we need to change the indent at each recursion
    private void printTree(OutputStreamWriter out, boolean isRight, String indent) throws IOException {
        if (right != null) {
            right.printTree(out, true, indent + (isRight ? "        " : " |      "));
        }
        out.write(indent);
        if (isRight) {
            out.write(" /");
        } else {
            out.write(" \\");
        }
        out.write("----- ");
        printNodeValue(out);
        if (left != null) {
            left.printTree(out, false, indent + (isRight ? " |      " : "        "));
        }
    }

}

将打印:

                 /----- 20
                 |       \----- 15
         /----- 14
         |       \----- 13
 /----- 12
 |       |       /----- 11
 |       \----- 10
 |               \----- 9
8
 |               /----- 7
 |       /----- 6
 |       |       \----- 5
 \----- 4
         |       /----- 3
         \----- 2
                 \----- 1

对于输入

8 4 12 2 6 10 14 1 3 5 7 9 11 13 20 15

这是@anurag回答的一个变体——看到额外的|让我很烦

按行打印[大]树。

输出的例子:

z
├── c
│   ├── a
│   └── b
├── d
├── e
│   └── asdf
└── f

代码:

public class TreeNode {

    final String name;
    final List<TreeNode> children;

    public TreeNode(String name, List<TreeNode> children) {
        this.name = name;
        this.children = children;
    }

    public String toString() {
        StringBuilder buffer = new StringBuilder(50);
        print(buffer, "", "");
        return buffer.toString();
    }

    private void print(StringBuilder buffer, String prefix, String childrenPrefix) {
        buffer.append(prefix);
        buffer.append(name);
        buffer.append('\n');
        for (Iterator<TreeNode> it = children.iterator(); it.hasNext();) {
            TreeNode next = it.next();
            if (it.hasNext()) {
                next.print(buffer, childrenPrefix + "├── ", childrenPrefix + "│   ");
            } else {
                next.print(buffer, childrenPrefix + "└── ", childrenPrefix + "    ");
            }
        }
    }
}

附注:这个答案并不完全关注“二叉”树——相反,它打印了各种类型的树。解决方案的灵感来自linux中的“树”命令。

我已经创建了简单的二叉树打印机。您可以随心所欲地使用和修改它,但无论如何它都没有优化。我认为这里有很多东西可以改进;)

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class BTreePrinterTest {

    private static Node<Integer> test1() {
        Node<Integer> root = new Node<Integer>(2);
        Node<Integer> n11 = new Node<Integer>(7);
        Node<Integer> n12 = new Node<Integer>(5);
        Node<Integer> n21 = new Node<Integer>(2);
        Node<Integer> n22 = new Node<Integer>(6);
        Node<Integer> n23 = new Node<Integer>(3);
        Node<Integer> n24 = new Node<Integer>(6);
        Node<Integer> n31 = new Node<Integer>(5);
        Node<Integer> n32 = new Node<Integer>(8);
        Node<Integer> n33 = new Node<Integer>(4);
        Node<Integer> n34 = new Node<Integer>(5);
        Node<Integer> n35 = new Node<Integer>(8);
        Node<Integer> n36 = new Node<Integer>(4);
        Node<Integer> n37 = new Node<Integer>(5);
        Node<Integer> n38 = new Node<Integer>(8);

        root.left = n11;
        root.right = n12;

        n11.left = n21;
        n11.right = n22;
        n12.left = n23;
        n12.right = n24;

        n21.left = n31;
        n21.right = n32;
        n22.left = n33;
        n22.right = n34;
        n23.left = n35;
        n23.right = n36;
        n24.left = n37;
        n24.right = n38;

        return root;
    }

    private static Node<Integer> test2() {
        Node<Integer> root = new Node<Integer>(2);
        Node<Integer> n11 = new Node<Integer>(7);
        Node<Integer> n12 = new Node<Integer>(5);
        Node<Integer> n21 = new Node<Integer>(2);
        Node<Integer> n22 = new Node<Integer>(6);
        Node<Integer> n23 = new Node<Integer>(9);
        Node<Integer> n31 = new Node<Integer>(5);
        Node<Integer> n32 = new Node<Integer>(8);
        Node<Integer> n33 = new Node<Integer>(4);

        root.left = n11;
        root.right = n12;

        n11.left = n21;
        n11.right = n22;

        n12.right = n23;
        n22.left = n31;
        n22.right = n32;

        n23.left = n33;

        return root;
    }

    public static void main(String[] args) {

        BTreePrinter.printNode(test1());
        BTreePrinter.printNode(test2());

    }
}

class Node<T extends Comparable<?>> {
    Node<T> left, right;
    T data;

    public Node(T data) {
        this.data = data;
    }
}

class BTreePrinter {

    public static <T extends Comparable<?>> void printNode(Node<T> root) {
        int maxLevel = BTreePrinter.maxLevel(root);

        printNodeInternal(Collections.singletonList(root), 1, maxLevel);
    }

    private static <T extends Comparable<?>> void printNodeInternal(List<Node<T>> nodes, int level, int maxLevel) {
        if (nodes.isEmpty() || BTreePrinter.isAllElementsNull(nodes))
            return;

        int floor = maxLevel - level;
        int endgeLines = (int) Math.pow(2, (Math.max(floor - 1, 0)));
        int firstSpaces = (int) Math.pow(2, (floor)) - 1;
        int betweenSpaces = (int) Math.pow(2, (floor + 1)) - 1;

        BTreePrinter.printWhitespaces(firstSpaces);

        List<Node<T>> newNodes = new ArrayList<Node<T>>();
        for (Node<T> node : nodes) {
            if (node != null) {
                System.out.print(node.data);
                newNodes.add(node.left);
                newNodes.add(node.right);
            } else {
                newNodes.add(null);
                newNodes.add(null);
                System.out.print(" ");
            }

            BTreePrinter.printWhitespaces(betweenSpaces);
        }
        System.out.println("");

        for (int i = 1; i <= endgeLines; i++) {
            for (int j = 0; j < nodes.size(); j++) {
                BTreePrinter.printWhitespaces(firstSpaces - i);
                if (nodes.get(j) == null) {
                    BTreePrinter.printWhitespaces(endgeLines + endgeLines + i + 1);
                    continue;
                }

                if (nodes.get(j).left != null)
                    System.out.print("/");
                else
                    BTreePrinter.printWhitespaces(1);

                BTreePrinter.printWhitespaces(i + i - 1);

                if (nodes.get(j).right != null)
                    System.out.print("\\");
                else
                    BTreePrinter.printWhitespaces(1);

                BTreePrinter.printWhitespaces(endgeLines + endgeLines - i);
            }

            System.out.println("");
        }

        printNodeInternal(newNodes, level + 1, maxLevel);
    }

    private static void printWhitespaces(int count) {
        for (int i = 0; i < count; i++)
            System.out.print(" ");
    }

    private static <T extends Comparable<?>> int maxLevel(Node<T> node) {
        if (node == null)
            return 0;

        return Math.max(BTreePrinter.maxLevel(node.left), BTreePrinter.maxLevel(node.right)) + 1;
    }

    private static <T> boolean isAllElementsNull(List<T> list) {
        for (Object object : list) {
            if (object != null)
                return false;
        }

        return true;
    }

}

输出1:

         2               
        / \       
       /   \      
      /     \     
     /       \    
     7       5       
    / \     / \   
   /   \   /   \  
   2   6   3   6   
  / \ / \ / \ / \ 
  5 8 4 5 8 4 5 8 

输出2:

       2               
      / \       
     /   \      
    /     \     
   /       \    
   7       5       
  / \       \   
 /   \       \  
 2   6       9   
    / \     /   
    5 8     4   

下面是可视化树的另一种方法:将节点保存为xml文件,然后让浏览器显示层次结构:

class treeNode{
    int key;
    treeNode left;
    treeNode right;

    public treeNode(int key){
        this.key = key;
        left = right = null;
    }

    public void printNode(StringBuilder output, String dir){
        output.append("<node key='" + key + "' dir='" + dir + "'>");
        if(left != null)
            left.printNode(output, "l");
        if(right != null)
            right.printNode(output, "r");
        output.append("</node>");
    }
}

class tree{
    private treeNode treeRoot;

    public tree(int key){
        treeRoot = new treeNode(key);
    }

    public void insert(int key){
        insert(treeRoot, key);
    }

    private treeNode insert(treeNode root, int key){
        if(root == null){
            treeNode child = new treeNode(key);
            return child;
        }

        if(key < root.key)
            root.left = insert(root.left, key);
        else if(key > root.key)
            root.right = insert(root.right, key);

        return root;
    }

    public void saveTreeAsXml(){
        StringBuilder strOutput = new StringBuilder();
        strOutput.append("<?xml version=\"1.0\" encoding=\"UTF-8\"?>");
        treeRoot.printNode(strOutput, "root");
        try {
            PrintWriter writer = new PrintWriter("C:/tree.xml", "UTF-8");
            writer.write(strOutput.toString());
            writer.close();
        }
        catch (FileNotFoundException e){

        }
        catch(UnsupportedEncodingException e){

        }
    }
}

下面是测试它的代码:

    tree t = new tree(1);
    t.insert(10);
    t.insert(5);
    t.insert(4);
    t.insert(20);
    t.insert(40);
    t.insert(30);
    t.insert(80);
    t.insert(60);
    t.insert(50);

    t.saveTreeAsXml();

输出如下所示: