我如何在Java中打印一个二叉树,这样输出就像:
4
/ \
2 5
我的节点:
public class Node<A extends Comparable> {
Node<A> left, right;
A data;
public Node(A data){
this.data = data;
}
}
我如何在Java中打印一个二叉树,这样输出就像:
4
/ \
2 5
我的节点:
public class Node<A extends Comparable> {
Node<A> left, right;
A data;
public Node(A data){
this.data = data;
}
}
当前回答
我为此做了一个改进的算法,可以很好地处理不同大小的节点。它使用行自上而下地打印。
package alg;
import java.util.ArrayList;
import java.util.List;
/**
* Binary tree printer
*
* @author MightyPork
*/
public class TreePrinter
{
/** Node that can be printed */
public interface PrintableNode
{
/** Get left child */
PrintableNode getLeft();
/** Get right child */
PrintableNode getRight();
/** Get text to be printed */
String getText();
}
/**
* Print a tree
*
* @param root
* tree root node
*/
public static void print(PrintableNode root)
{
List<List<String>> lines = new ArrayList<List<String>>();
List<PrintableNode> level = new ArrayList<PrintableNode>();
List<PrintableNode> next = new ArrayList<PrintableNode>();
level.add(root);
int nn = 1;
int widest = 0;
while (nn != 0) {
List<String> line = new ArrayList<String>();
nn = 0;
for (PrintableNode n : level) {
if (n == null) {
line.add(null);
next.add(null);
next.add(null);
} else {
String aa = n.getText();
line.add(aa);
if (aa.length() > widest) widest = aa.length();
next.add(n.getLeft());
next.add(n.getRight());
if (n.getLeft() != null) nn++;
if (n.getRight() != null) nn++;
}
}
if (widest % 2 == 1) widest++;
lines.add(line);
List<PrintableNode> tmp = level;
level = next;
next = tmp;
next.clear();
}
int perpiece = lines.get(lines.size() - 1).size() * (widest + 4);
for (int i = 0; i < lines.size(); i++) {
List<String> line = lines.get(i);
int hpw = (int) Math.floor(perpiece / 2f) - 1;
if (i > 0) {
for (int j = 0; j < line.size(); j++) {
// split node
char c = ' ';
if (j % 2 == 1) {
if (line.get(j - 1) != null) {
c = (line.get(j) != null) ? '┴' : '┘';
} else {
if (j < line.size() && line.get(j) != null) c = '└';
}
}
System.out.print(c);
// lines and spaces
if (line.get(j) == null) {
for (int k = 0; k < perpiece - 1; k++) {
System.out.print(" ");
}
} else {
for (int k = 0; k < hpw; k++) {
System.out.print(j % 2 == 0 ? " " : "─");
}
System.out.print(j % 2 == 0 ? "┌" : "┐");
for (int k = 0; k < hpw; k++) {
System.out.print(j % 2 == 0 ? "─" : " ");
}
}
}
System.out.println();
}
// print line of numbers
for (int j = 0; j < line.size(); j++) {
String f = line.get(j);
if (f == null) f = "";
int gap1 = (int) Math.ceil(perpiece / 2f - f.length() / 2f);
int gap2 = (int) Math.floor(perpiece / 2f - f.length() / 2f);
// a number
for (int k = 0; k < gap1; k++) {
System.out.print(" ");
}
System.out.print(f);
for (int k = 0; k < gap2; k++) {
System.out.print(" ");
}
}
System.out.println();
perpiece /= 2;
}
}
}
要在树中使用它,让Node类实现PrintableNode。
示例输出:
2952:0
┌───────────────────────┴───────────────────────┐
1249:-1 5866:0
┌───────────┴───────────┐ ┌───────────┴───────────┐
491:-1 1572:0 4786:1 6190:0
┌─────┘ └─────┐ ┌─────┴─────┐
339:0 5717:0 6061:0 6271:0
其他回答
试试这个:
public static void print(int[] minHeap, int minWidth) {
int size = minHeap.length;
int level = log2(size);
int maxLength = (int) Math.pow(2, level) * minWidth;
int currentLevel = -1 ;
int width = maxLength;
for (int i = 0; i < size; i++) {
if (log2(i + 1) > currentLevel) {
currentLevel++;
System.out.println();
width = maxLength / (int) Math.pow(2, currentLevel);
}
System.out.print(StringUtils.center(String.valueOf(minHeap[i]), width));
}
System.out.println();
}
private static int log2(int n) {
return (int) (Math.log(n) / Math.log(2));
}
这段代码片段的思想是用maxLength(即底线的长度)除以每一行的元素数量来得到块宽度。然后把元素放在每个块的中间。
参数minWidth表示底部行中块的长度。
用一张图片来说明想法并展示结果。
我发现VasyaNovikov的答案对于打印大型通用树非常有用,并将其修改为二叉树
代码:
class TreeNode {
Integer data = null;
TreeNode left = null;
TreeNode right = null;
TreeNode(Integer data) {this.data = data;}
public void print() {
print("", this, false);
}
public void print(String prefix, TreeNode n, boolean isLeft) {
if (n != null) {
System.out.println (prefix + (isLeft ? "|-- " : "\\-- ") + n.data);
print(prefix + (isLeft ? "| " : " "), n.left, true);
print(prefix + (isLeft ? "| " : " "), n.right, false);
}
}
}
样例输出:
\-- 7
|-- 3
| |-- 1
| | \-- 2
| \-- 5
| |-- 4
| \-- 6
\-- 11
|-- 9
| |-- 8
| \-- 10
\-- 13
|-- 12
\-- 14
一个Scala解决方案,改编自Vasya Novikov的答案,专门用于二叉树:
/** An immutable Binary Tree. */
case class BTree[T](value: T, left: Option[BTree[T]], right: Option[BTree[T]]) {
/* Adapted from: http://stackoverflow.com/a/8948691/643684 */
def pretty: String = {
def work(tree: BTree[T], prefix: String, isTail: Boolean): String = {
val (line, bar) = if (isTail) ("└── ", " ") else ("├── ", "│")
val curr = s"${prefix}${line}${tree.value}"
val rights = tree.right match {
case None => s"${prefix}${bar} ├── ∅"
case Some(r) => work(r, s"${prefix}${bar} ", false)
}
val lefts = tree.left match {
case None => s"${prefix}${bar} └── ∅"
case Some(l) => work(l, s"${prefix}${bar} ", true)
}
s"${curr}\n${rights}\n${lefts}"
}
work(this, "", true)
}
}
你的树每一层需要两倍的距离:
a / \ / \ / \ / \ b c / \ / \ / \ / \ d e f g / \ / \ / \ / \ h i j k l m n o
你可以将你的树保存在一个数组的数组中,每个数组对应一个深度:
[[a],[b,c],[d,e,f,g],[h,i,j,k,l,m,n,o]]
如果你的树没有满,你需要在数组中包含空值:
a / \ / \ / \ / \ b c / \ / \ / \ / \ d e f g / \ \ / \ \ h i k l m o [[a],[b,c],[d,e,f,g],[h,i, ,k,l,m, ,o]]
然后你可以遍历数组来打印你的树,根据深度打印第一个元素之前和元素之间的空格,根据下一层数组中对应的元素是否被填充打印行。 如果您的值可以超过一个字符长,您需要在创建数组表示时找到最长的值,并相应地乘以所有宽度和行数。
我已经创建了简单的二叉树打印机。您可以随心所欲地使用和修改它,但无论如何它都没有优化。我认为这里有很多东西可以改进;)
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class BTreePrinterTest {
private static Node<Integer> test1() {
Node<Integer> root = new Node<Integer>(2);
Node<Integer> n11 = new Node<Integer>(7);
Node<Integer> n12 = new Node<Integer>(5);
Node<Integer> n21 = new Node<Integer>(2);
Node<Integer> n22 = new Node<Integer>(6);
Node<Integer> n23 = new Node<Integer>(3);
Node<Integer> n24 = new Node<Integer>(6);
Node<Integer> n31 = new Node<Integer>(5);
Node<Integer> n32 = new Node<Integer>(8);
Node<Integer> n33 = new Node<Integer>(4);
Node<Integer> n34 = new Node<Integer>(5);
Node<Integer> n35 = new Node<Integer>(8);
Node<Integer> n36 = new Node<Integer>(4);
Node<Integer> n37 = new Node<Integer>(5);
Node<Integer> n38 = new Node<Integer>(8);
root.left = n11;
root.right = n12;
n11.left = n21;
n11.right = n22;
n12.left = n23;
n12.right = n24;
n21.left = n31;
n21.right = n32;
n22.left = n33;
n22.right = n34;
n23.left = n35;
n23.right = n36;
n24.left = n37;
n24.right = n38;
return root;
}
private static Node<Integer> test2() {
Node<Integer> root = new Node<Integer>(2);
Node<Integer> n11 = new Node<Integer>(7);
Node<Integer> n12 = new Node<Integer>(5);
Node<Integer> n21 = new Node<Integer>(2);
Node<Integer> n22 = new Node<Integer>(6);
Node<Integer> n23 = new Node<Integer>(9);
Node<Integer> n31 = new Node<Integer>(5);
Node<Integer> n32 = new Node<Integer>(8);
Node<Integer> n33 = new Node<Integer>(4);
root.left = n11;
root.right = n12;
n11.left = n21;
n11.right = n22;
n12.right = n23;
n22.left = n31;
n22.right = n32;
n23.left = n33;
return root;
}
public static void main(String[] args) {
BTreePrinter.printNode(test1());
BTreePrinter.printNode(test2());
}
}
class Node<T extends Comparable<?>> {
Node<T> left, right;
T data;
public Node(T data) {
this.data = data;
}
}
class BTreePrinter {
public static <T extends Comparable<?>> void printNode(Node<T> root) {
int maxLevel = BTreePrinter.maxLevel(root);
printNodeInternal(Collections.singletonList(root), 1, maxLevel);
}
private static <T extends Comparable<?>> void printNodeInternal(List<Node<T>> nodes, int level, int maxLevel) {
if (nodes.isEmpty() || BTreePrinter.isAllElementsNull(nodes))
return;
int floor = maxLevel - level;
int endgeLines = (int) Math.pow(2, (Math.max(floor - 1, 0)));
int firstSpaces = (int) Math.pow(2, (floor)) - 1;
int betweenSpaces = (int) Math.pow(2, (floor + 1)) - 1;
BTreePrinter.printWhitespaces(firstSpaces);
List<Node<T>> newNodes = new ArrayList<Node<T>>();
for (Node<T> node : nodes) {
if (node != null) {
System.out.print(node.data);
newNodes.add(node.left);
newNodes.add(node.right);
} else {
newNodes.add(null);
newNodes.add(null);
System.out.print(" ");
}
BTreePrinter.printWhitespaces(betweenSpaces);
}
System.out.println("");
for (int i = 1; i <= endgeLines; i++) {
for (int j = 0; j < nodes.size(); j++) {
BTreePrinter.printWhitespaces(firstSpaces - i);
if (nodes.get(j) == null) {
BTreePrinter.printWhitespaces(endgeLines + endgeLines + i + 1);
continue;
}
if (nodes.get(j).left != null)
System.out.print("/");
else
BTreePrinter.printWhitespaces(1);
BTreePrinter.printWhitespaces(i + i - 1);
if (nodes.get(j).right != null)
System.out.print("\\");
else
BTreePrinter.printWhitespaces(1);
BTreePrinter.printWhitespaces(endgeLines + endgeLines - i);
}
System.out.println("");
}
printNodeInternal(newNodes, level + 1, maxLevel);
}
private static void printWhitespaces(int count) {
for (int i = 0; i < count; i++)
System.out.print(" ");
}
private static <T extends Comparable<?>> int maxLevel(Node<T> node) {
if (node == null)
return 0;
return Math.max(BTreePrinter.maxLevel(node.left), BTreePrinter.maxLevel(node.right)) + 1;
}
private static <T> boolean isAllElementsNull(List<T> list) {
for (Object object : list) {
if (object != null)
return false;
}
return true;
}
}
输出1:
2
/ \
/ \
/ \
/ \
7 5
/ \ / \
/ \ / \
2 6 3 6
/ \ / \ / \ / \
5 8 4 5 8 4 5 8
输出2:
2
/ \
/ \
/ \
/ \
7 5
/ \ \
/ \ \
2 6 9
/ \ /
5 8 4