我如何在Java中打印一个二叉树,这样输出就像:
4
/ \
2 5
我的节点:
public class Node<A extends Comparable> {
Node<A> left, right;
A data;
public Node(A data){
this.data = data;
}
}
我如何在Java中打印一个二叉树,这样输出就像:
4
/ \
2 5
我的节点:
public class Node<A extends Comparable> {
Node<A> left, right;
A data;
public Node(A data){
this.data = data;
}
}
当前回答
试试这个:
public static void print(int[] minHeap, int minWidth) {
int size = minHeap.length;
int level = log2(size);
int maxLength = (int) Math.pow(2, level) * minWidth;
int currentLevel = -1 ;
int width = maxLength;
for (int i = 0; i < size; i++) {
if (log2(i + 1) > currentLevel) {
currentLevel++;
System.out.println();
width = maxLength / (int) Math.pow(2, currentLevel);
}
System.out.print(StringUtils.center(String.valueOf(minHeap[i]), width));
}
System.out.println();
}
private static int log2(int n) {
return (int) (Math.log(n) / Math.log(2));
}
这段代码片段的思想是用maxLength(即底线的长度)除以每一行的元素数量来得到块宽度。然后把元素放在每个块的中间。
参数minWidth表示底部行中块的长度。
用一张图片来说明想法并展示结果。
其他回答
https://github.com/AharonSambol/PrettyPrintTreeJava
我知道我迟到了。但是我做了这个解决方案,不仅适用于简单的树,也适用于更复杂的树(如多行字符串)
示例输出:
在控制台打印:
500
700 300
200 400
简单代码:
public int getHeight()
{
if(rootNode == null) return -1;
return getHeight(rootNode);
}
private int getHeight(Node node)
{
if(node == null) return -1;
return Math.max(getHeight(node.left), getHeight(node.right)) + 1;
}
public void printBinaryTree(Node rootNode)
{
Queue<Node> rootsQueue = new LinkedList<Node>();
Queue<Node> levelQueue = new LinkedList<Node>();
levelQueue.add(rootNode);
int treeHeight = getHeight();
int firstNodeGap;
int internalNodeGap;
int copyinternalNodeGap;
while(true)
{
System.out.println("");
internalNodeGap = (int)(Math.pow(2, treeHeight + 1) -1);
copyinternalNodeGap = internalNodeGap;
firstNodeGap = internalNodeGap/2;
boolean levelFirstNode = true;
while(!levelQueue.isEmpty())
{
internalNodeGap = copyinternalNodeGap;
Node currNode = levelQueue.poll();
if(currNode != null)
{
if(levelFirstNode)
{
while(firstNodeGap > 0)
{
System.out.format("%s", " ");
firstNodeGap--;
}
levelFirstNode =false;
}
else
{
while(internalNodeGap>0)
{
internalNodeGap--;
System.out.format("%s", " ");
}
}
System.out.format("%3d",currNode.data);
rootsQueue.add(currNode);
}
}
--treeHeight;
while(!rootsQueue.isEmpty())
{
Node currNode = rootsQueue.poll();
if(currNode != null)
{
levelQueue.add(currNode.left);
levelQueue.add(currNode.right);
}
}
if(levelQueue.isEmpty()) break;
}
}
我已经创建了简单的二叉树打印机。您可以随心所欲地使用和修改它,但无论如何它都没有优化。我认为这里有很多东西可以改进;)
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class BTreePrinterTest {
private static Node<Integer> test1() {
Node<Integer> root = new Node<Integer>(2);
Node<Integer> n11 = new Node<Integer>(7);
Node<Integer> n12 = new Node<Integer>(5);
Node<Integer> n21 = new Node<Integer>(2);
Node<Integer> n22 = new Node<Integer>(6);
Node<Integer> n23 = new Node<Integer>(3);
Node<Integer> n24 = new Node<Integer>(6);
Node<Integer> n31 = new Node<Integer>(5);
Node<Integer> n32 = new Node<Integer>(8);
Node<Integer> n33 = new Node<Integer>(4);
Node<Integer> n34 = new Node<Integer>(5);
Node<Integer> n35 = new Node<Integer>(8);
Node<Integer> n36 = new Node<Integer>(4);
Node<Integer> n37 = new Node<Integer>(5);
Node<Integer> n38 = new Node<Integer>(8);
root.left = n11;
root.right = n12;
n11.left = n21;
n11.right = n22;
n12.left = n23;
n12.right = n24;
n21.left = n31;
n21.right = n32;
n22.left = n33;
n22.right = n34;
n23.left = n35;
n23.right = n36;
n24.left = n37;
n24.right = n38;
return root;
}
private static Node<Integer> test2() {
Node<Integer> root = new Node<Integer>(2);
Node<Integer> n11 = new Node<Integer>(7);
Node<Integer> n12 = new Node<Integer>(5);
Node<Integer> n21 = new Node<Integer>(2);
Node<Integer> n22 = new Node<Integer>(6);
Node<Integer> n23 = new Node<Integer>(9);
Node<Integer> n31 = new Node<Integer>(5);
Node<Integer> n32 = new Node<Integer>(8);
Node<Integer> n33 = new Node<Integer>(4);
root.left = n11;
root.right = n12;
n11.left = n21;
n11.right = n22;
n12.right = n23;
n22.left = n31;
n22.right = n32;
n23.left = n33;
return root;
}
public static void main(String[] args) {
BTreePrinter.printNode(test1());
BTreePrinter.printNode(test2());
}
}
class Node<T extends Comparable<?>> {
Node<T> left, right;
T data;
public Node(T data) {
this.data = data;
}
}
class BTreePrinter {
public static <T extends Comparable<?>> void printNode(Node<T> root) {
int maxLevel = BTreePrinter.maxLevel(root);
printNodeInternal(Collections.singletonList(root), 1, maxLevel);
}
private static <T extends Comparable<?>> void printNodeInternal(List<Node<T>> nodes, int level, int maxLevel) {
if (nodes.isEmpty() || BTreePrinter.isAllElementsNull(nodes))
return;
int floor = maxLevel - level;
int endgeLines = (int) Math.pow(2, (Math.max(floor - 1, 0)));
int firstSpaces = (int) Math.pow(2, (floor)) - 1;
int betweenSpaces = (int) Math.pow(2, (floor + 1)) - 1;
BTreePrinter.printWhitespaces(firstSpaces);
List<Node<T>> newNodes = new ArrayList<Node<T>>();
for (Node<T> node : nodes) {
if (node != null) {
System.out.print(node.data);
newNodes.add(node.left);
newNodes.add(node.right);
} else {
newNodes.add(null);
newNodes.add(null);
System.out.print(" ");
}
BTreePrinter.printWhitespaces(betweenSpaces);
}
System.out.println("");
for (int i = 1; i <= endgeLines; i++) {
for (int j = 0; j < nodes.size(); j++) {
BTreePrinter.printWhitespaces(firstSpaces - i);
if (nodes.get(j) == null) {
BTreePrinter.printWhitespaces(endgeLines + endgeLines + i + 1);
continue;
}
if (nodes.get(j).left != null)
System.out.print("/");
else
BTreePrinter.printWhitespaces(1);
BTreePrinter.printWhitespaces(i + i - 1);
if (nodes.get(j).right != null)
System.out.print("\\");
else
BTreePrinter.printWhitespaces(1);
BTreePrinter.printWhitespaces(endgeLines + endgeLines - i);
}
System.out.println("");
}
printNodeInternal(newNodes, level + 1, maxLevel);
}
private static void printWhitespaces(int count) {
for (int i = 0; i < count; i++)
System.out.print(" ");
}
private static <T extends Comparable<?>> int maxLevel(Node<T> node) {
if (node == null)
return 0;
return Math.max(BTreePrinter.maxLevel(node.left), BTreePrinter.maxLevel(node.right)) + 1;
}
private static <T> boolean isAllElementsNull(List<T> list) {
for (Object object : list) {
if (object != null)
return false;
}
return true;
}
}
输出1:
2
/ \
/ \
/ \
/ \
7 5
/ \ / \
/ \ / \
2 6 3 6
/ \ / \ / \ / \
5 8 4 5 8 4 5 8
输出2:
2
/ \
/ \
/ \
/ \
7 5
/ \ \
/ \ \
2 6 9
/ \ /
5 8 4
你的树每一层需要两倍的距离:
a / \ / \ / \ / \ b c / \ / \ / \ / \ d e f g / \ / \ / \ / \ h i j k l m n o
你可以将你的树保存在一个数组的数组中,每个数组对应一个深度:
[[a],[b,c],[d,e,f,g],[h,i,j,k,l,m,n,o]]
如果你的树没有满,你需要在数组中包含空值:
a / \ / \ / \ / \ b c / \ / \ / \ / \ d e f g / \ \ / \ \ h i k l m o [[a],[b,c],[d,e,f,g],[h,i, ,k,l,m, ,o]]
然后你可以遍历数组来打印你的树,根据深度打印第一个元素之前和元素之间的空格,根据下一层数组中对应的元素是否被填充打印行。 如果您的值可以超过一个字符长,您需要在创建数组表示时找到最长的值,并相应地乘以所有宽度和行数。
迈克尔。克鲁兹曼,我不得不说,这人不错。这很有用。
然而,上面的方法只适用于个位数:如果您要使用多个数字,结构将会错位,因为您使用的是空格而不是制表符。
至于我后来的代码,我需要更多的数字,所以我自己编写了一个程序。
它现在有一些bug,现在我感觉很懒去纠正它们,但它打印得非常漂亮,节点可以接受更大数量的数字。
这棵树不会像问题提到的那样,但它旋转了270度:)
public static void printBinaryTree(TreeNode root, int level){
if(root==null)
return;
printBinaryTree(root.right, level+1);
if(level!=0){
for(int i=0;i<level-1;i++)
System.out.print("|\t");
System.out.println("|-------"+root.val);
}
else
System.out.println(root.val);
printBinaryTree(root.left, level+1);
}
将此函数与您自己指定的TreeNode一起放置,并保持初始级别为0,并享受!
以下是一些输出示例:
| | |-------11
| |-------10
| | |-------9
|-------8
| | |-------7
| |-------6
| | |-------5
4
| |-------3
|-------2
| |-------1
| | | |-------10
| | |-------9
| |-------8
| | |-------7
|-------6
| |-------5
4
| |-------3
|-------2
| |-------1
唯一的问题是延伸的分支;我会尽快解决这个问题,但在此之前你也可以使用它。