我如何在Java中打印一个二叉树,这样输出就像:
4
/ \
2 5
我的节点:
public class Node<A extends Comparable> {
Node<A> left, right;
A data;
public Node(A data){
this.data = data;
}
}
我如何在Java中打印一个二叉树,这样输出就像:
4
/ \
2 5
我的节点:
public class Node<A extends Comparable> {
Node<A> left, right;
A data;
public Node(A data){
this.data = data;
}
}
当前回答
根据VasyaNovikov的回答。改进了一些Java魔术:泛型和函数接口。
/**
* Print a tree structure in a pretty ASCII fromat.
* @param prefix Currnet previx. Use "" in initial call!
* @param node The current node. Pass the root node of your tree in initial call.
* @param getChildrenFunc A {@link Function} that returns the children of a given node.
* @param isTail Is node the last of its sibblings. Use true in initial call. (This is needed for pretty printing.)
* @param <T> The type of your nodes. Anything that has a toString can be used.
*/
private <T> void printTreeRec(String prefix, T node, Function<T, List<T>> getChildrenFunc, boolean isTail) {
String nodeName = node.toString();
String nodeConnection = isTail ? "└── " : "├── ";
log.debug(prefix + nodeConnection + nodeName);
List<T> children = getChildrenFunc.apply(node);
for (int i = 0; i < children.size(); i++) {
String newPrefix = prefix + (isTail ? " " : "│ ");
printTreeRec(newPrefix, children.get(i), getChildrenFunc, i == children.size()-1);
}
}
初始调用示例:
Function<ChecksumModel, List<ChecksumModel>> getChildrenFunc = node -> getChildrenOf(node)
printTreeRec("", rootNode, getChildrenFunc, true);
将输出如下内容
└── rootNode
├── childNode1
├── childNode2
│ ├── childNode2.1
│ ├── childNode2.2
│ └── childNode2.3
├── childNode3
└── childNode4
其他回答
这是一个非常多功能的树打印机。不是最好看的,但能处理很多案子。如果你能弄清楚,可以随意添加斜杠。
package com.tomac120.NodePrinter;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
/**
* Created by elijah on 6/28/16.
*/
public class NodePrinter{
final private List<List<PrintableNodePosition>> nodesByRow;
int maxColumnsLeft = 0;
int maxColumnsRight = 0;
int maxTitleLength = 0;
String sep = " ";
int depth = 0;
public NodePrinter(PrintableNode rootNode, int chars_per_node){
this.setDepth(rootNode,1);
nodesByRow = new ArrayList<>(depth);
this.addNode(rootNode._getPrintableNodeInfo(),0,0);
for (int i = 0;i<chars_per_node;i++){
//sep += " ";
}
}
private void setDepth(PrintableNode info, int depth){
if (depth > this.depth){
this.depth = depth;
}
if (info._getLeftChild() != null){
this.setDepth(info._getLeftChild(),depth+1);
}
if (info._getRightChild() != null){
this.setDepth(info._getRightChild(),depth+1);
}
}
private void addNode(PrintableNodeInfo node, int level, int position){
if (position < 0 && -position > maxColumnsLeft){
maxColumnsLeft = -position;
}
if (position > 0 && position > maxColumnsRight){
maxColumnsRight = position;
}
if (node.getTitleLength() > maxTitleLength){
maxTitleLength = node.getTitleLength();
}
List<PrintableNodePosition> row = this.getRow(level);
row.add(new PrintableNodePosition(node, level, position));
level++;
int depthToUse = Math.min(depth,6);
int levelToUse = Math.min(level,6);
int offset = depthToUse - levelToUse-1;
offset = (int)(Math.pow(offset,Math.log(depthToUse)*1.4));
offset = Math.max(offset,3);
PrintableNodeInfo leftChild = node.getLeftChildInfo();
PrintableNodeInfo rightChild = node.getRightChildInfo();
if (leftChild != null){
this.addNode(leftChild,level,position-offset);
}
if (rightChild != null){
this.addNode(rightChild,level,position+offset);
}
}
private List<PrintableNodePosition> getRow(int row){
if (row > nodesByRow.size() - 1){
nodesByRow.add(new LinkedList<>());
}
return nodesByRow.get(row);
}
public void print(){
int max_chars = this.maxColumnsLeft+maxColumnsRight+1;
int level = 0;
String node_format = "%-"+this.maxTitleLength+"s";
for (List<PrintableNodePosition> pos_arr : this.nodesByRow){
String[] chars = this.getCharactersArray(pos_arr,max_chars);
String line = "";
int empty_chars = 0;
for (int i=0;i<chars.length+1;i++){
String value_i = i < chars.length ? chars[i]:null;
if (chars.length + 1 == i || value_i != null){
if (empty_chars > 0) {
System.out.print(String.format("%-" + empty_chars + "s", " "));
}
if (value_i != null){
System.out.print(String.format(node_format,value_i));
empty_chars = -1;
} else{
empty_chars = 0;
}
} else {
empty_chars++;
}
}
System.out.print("\n");
int depthToUse = Math.min(6,depth);
int line_offset = depthToUse - level;
line_offset *= 0.5;
line_offset = Math.max(0,line_offset);
for (int i=0;i<line_offset;i++){
System.out.println("");
}
level++;
}
}
private String[] getCharactersArray(List<PrintableNodePosition> nodes, int max_chars){
String[] positions = new String[max_chars+1];
for (PrintableNodePosition a : nodes){
int pos_i = maxColumnsLeft + a.column;
String title_i = a.nodeInfo.getTitleFormatted(this.maxTitleLength);
positions[pos_i] = title_i;
}
return positions;
}
}
NodeInfo类
package com.tomac120.NodePrinter;
/**
* Created by elijah on 6/28/16.
*/
public class PrintableNodeInfo {
public enum CLI_PRINT_COLOR {
RESET("\u001B[0m"),
BLACK("\u001B[30m"),
RED("\u001B[31m"),
GREEN("\u001B[32m"),
YELLOW("\u001B[33m"),
BLUE("\u001B[34m"),
PURPLE("\u001B[35m"),
CYAN("\u001B[36m"),
WHITE("\u001B[37m");
final String value;
CLI_PRINT_COLOR(String value){
this.value = value;
}
@Override
public String toString() {
return value;
}
}
private final String title;
private final PrintableNode leftChild;
private final PrintableNode rightChild;
private final CLI_PRINT_COLOR textColor;
public PrintableNodeInfo(String title, PrintableNode leftChild, PrintableNode rightChild){
this(title,leftChild,rightChild,CLI_PRINT_COLOR.BLACK);
}
public PrintableNodeInfo(String title, PrintableNode leftChild, PrintableNode righthild, CLI_PRINT_COLOR textColor){
this.title = title;
this.leftChild = leftChild;
this.rightChild = righthild;
this.textColor = textColor;
}
public String getTitle(){
return title;
}
public CLI_PRINT_COLOR getTextColor(){
return textColor;
}
public String getTitleFormatted(int max_chars){
return this.textColor+title+CLI_PRINT_COLOR.RESET;
/*
String title = this.title.length() > max_chars ? this.title.substring(0,max_chars+1):this.title;
boolean left = true;
while(title.length() < max_chars){
if (left){
title = " "+title;
} else {
title = title + " ";
}
}
return this.textColor+title+CLI_PRINT_COLOR.RESET;*/
}
public int getTitleLength(){
return title.length();
}
public PrintableNodeInfo getLeftChildInfo(){
if (leftChild == null){
return null;
}
return leftChild._getPrintableNodeInfo();
}
public PrintableNodeInfo getRightChildInfo(){
if (rightChild == null){
return null;
}
return rightChild._getPrintableNodeInfo();
}
}
NodePosition类
package com.tomac120.NodePrinter;
/**
* Created by elijah on 6/28/16.
*/
public class PrintableNodePosition implements Comparable<PrintableNodePosition> {
public final int row;
public final int column;
public final PrintableNodeInfo nodeInfo;
public PrintableNodePosition(PrintableNodeInfo nodeInfo, int row, int column){
this.row = row;
this.column = column;
this.nodeInfo = nodeInfo;
}
@Override
public int compareTo(PrintableNodePosition o) {
return Integer.compare(this.column,o.column);
}
}
最后是节点接口
package com.tomac120.NodePrinter;
/**
* Created by elijah on 6/28/16.
*/
public interface PrintableNode {
PrintableNodeInfo _getPrintableNodeInfo();
PrintableNode _getLeftChild();
PrintableNode _getRightChild();
}
迈克尔。克鲁兹曼,我不得不说,这人不错。这很有用。
然而,上面的方法只适用于个位数:如果您要使用多个数字,结构将会错位,因为您使用的是空格而不是制表符。
至于我后来的代码,我需要更多的数字,所以我自己编写了一个程序。
它现在有一些bug,现在我感觉很懒去纠正它们,但它打印得非常漂亮,节点可以接受更大数量的数字。
这棵树不会像问题提到的那样,但它旋转了270度:)
public static void printBinaryTree(TreeNode root, int level){
if(root==null)
return;
printBinaryTree(root.right, level+1);
if(level!=0){
for(int i=0;i<level-1;i++)
System.out.print("|\t");
System.out.println("|-------"+root.val);
}
else
System.out.println(root.val);
printBinaryTree(root.left, level+1);
}
将此函数与您自己指定的TreeNode一起放置,并保持初始级别为0,并享受!
以下是一些输出示例:
| | |-------11
| |-------10
| | |-------9
|-------8
| | |-------7
| |-------6
| | |-------5
4
| |-------3
|-------2
| |-------1
| | | |-------10
| | |-------9
| |-------8
| | |-------7
|-------6
| |-------5
4
| |-------3
|-------2
| |-------1
唯一的问题是延伸的分支;我会尽快解决这个问题,但在此之前你也可以使用它。
我发现VasyaNovikov的答案对于打印大型通用树非常有用,并将其修改为二叉树
代码:
class TreeNode {
Integer data = null;
TreeNode left = null;
TreeNode right = null;
TreeNode(Integer data) {this.data = data;}
public void print() {
print("", this, false);
}
public void print(String prefix, TreeNode n, boolean isLeft) {
if (n != null) {
System.out.println (prefix + (isLeft ? "|-- " : "\\-- ") + n.data);
print(prefix + (isLeft ? "| " : " "), n.left, true);
print(prefix + (isLeft ? "| " : " "), n.right, false);
}
}
}
样例输出:
\-- 7
|-- 3
| |-- 1
| | \-- 2
| \-- 5
| |-- 4
| \-- 6
\-- 11
|-- 9
| |-- 8
| \-- 10
\-- 13
|-- 12
\-- 14
与垂直表示相比,水平表示有点复杂。垂直打印只是简单的RNL(右->节点->左或镜像的顺序)遍历,以便先打印右子树,然后打印左子树。
def printFullTree(root, delim=' ', idnt=[], left=None):
if root:
idnt.append(delim)
x, y = setDelims(left)
printFullTree(root.right, x, idnt, False)
indent2(root.val, idnt)
printFullTree(root.left, y, idnt, True)
idnt.pop()
def setDelims(left):
x = ' '; y='|'
return (y,x) if (left == True) else (x,y) if (left == False) else (x,x)
def indent2(x, idnt, width=6):
for delim in idnt:
print(delim + ' '*(width-1), end='')
print('|->', x)
output:
|-> 15
|-> 14
| |-> 13
|-> 12
| | |-> 11
| |-> 10
| |-> 9
|-> 8
| |-> 7
| |-> 6
| | |-> 4
|-> 3
| |-> 2
|-> 1
|-> 0
在水平表示中,显示由TreeMap的HashMap或HashMap<Integer, TreeMap<Integer, Object>> xy构建;其中HashMap包含节点的y轴/level_no作为Key, TreeMap作为value。Treemap内部保存同一级别的所有节点,按它们的x轴值排序,作为键,从最左端开始-ve,根=0,最右端=+ve。
如果使用自平衡树/Treap,则使用HashMap使算法在每个级别的O(1)查找中工作,并在O(logn)中使用TreeMap排序。
不过,在这样做的时候,不要忘记为空子存储占位符,例如' '/空格,这样树看起来就像预期的那样。
现在唯一剩下的就是计算水平节点的距离,这可以用一些数学计算来完成,
计算树的宽度和高度。 一旦完成,在显示节点时,根据计算的宽度,高度和倾斜信息(如果有的话),以最佳距离呈现它们。
在控制台打印:
500
700 300
200 400
简单代码:
public int getHeight()
{
if(rootNode == null) return -1;
return getHeight(rootNode);
}
private int getHeight(Node node)
{
if(node == null) return -1;
return Math.max(getHeight(node.left), getHeight(node.right)) + 1;
}
public void printBinaryTree(Node rootNode)
{
Queue<Node> rootsQueue = new LinkedList<Node>();
Queue<Node> levelQueue = new LinkedList<Node>();
levelQueue.add(rootNode);
int treeHeight = getHeight();
int firstNodeGap;
int internalNodeGap;
int copyinternalNodeGap;
while(true)
{
System.out.println("");
internalNodeGap = (int)(Math.pow(2, treeHeight + 1) -1);
copyinternalNodeGap = internalNodeGap;
firstNodeGap = internalNodeGap/2;
boolean levelFirstNode = true;
while(!levelQueue.isEmpty())
{
internalNodeGap = copyinternalNodeGap;
Node currNode = levelQueue.poll();
if(currNode != null)
{
if(levelFirstNode)
{
while(firstNodeGap > 0)
{
System.out.format("%s", " ");
firstNodeGap--;
}
levelFirstNode =false;
}
else
{
while(internalNodeGap>0)
{
internalNodeGap--;
System.out.format("%s", " ");
}
}
System.out.format("%3d",currNode.data);
rootsQueue.add(currNode);
}
}
--treeHeight;
while(!rootsQueue.isEmpty())
{
Node currNode = rootsQueue.poll();
if(currNode != null)
{
levelQueue.add(currNode.left);
levelQueue.add(currNode.right);
}
}
if(levelQueue.isEmpty()) break;
}
}