我如何在Java中打印一个二叉树,这样输出就像:
4
/ \
2 5
我的节点:
public class Node<A extends Comparable> {
Node<A> left, right;
A data;
public Node(A data){
this.data = data;
}
}
我如何在Java中打印一个二叉树,这样输出就像:
4
/ \
2 5
我的节点:
public class Node<A extends Comparable> {
Node<A> left, right;
A data;
public Node(A data){
this.data = data;
}
}
当前回答
这是一个非常多功能的树打印机。不是最好看的,但能处理很多案子。如果你能弄清楚,可以随意添加斜杠。
package com.tomac120.NodePrinter;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
/**
* Created by elijah on 6/28/16.
*/
public class NodePrinter{
final private List<List<PrintableNodePosition>> nodesByRow;
int maxColumnsLeft = 0;
int maxColumnsRight = 0;
int maxTitleLength = 0;
String sep = " ";
int depth = 0;
public NodePrinter(PrintableNode rootNode, int chars_per_node){
this.setDepth(rootNode,1);
nodesByRow = new ArrayList<>(depth);
this.addNode(rootNode._getPrintableNodeInfo(),0,0);
for (int i = 0;i<chars_per_node;i++){
//sep += " ";
}
}
private void setDepth(PrintableNode info, int depth){
if (depth > this.depth){
this.depth = depth;
}
if (info._getLeftChild() != null){
this.setDepth(info._getLeftChild(),depth+1);
}
if (info._getRightChild() != null){
this.setDepth(info._getRightChild(),depth+1);
}
}
private void addNode(PrintableNodeInfo node, int level, int position){
if (position < 0 && -position > maxColumnsLeft){
maxColumnsLeft = -position;
}
if (position > 0 && position > maxColumnsRight){
maxColumnsRight = position;
}
if (node.getTitleLength() > maxTitleLength){
maxTitleLength = node.getTitleLength();
}
List<PrintableNodePosition> row = this.getRow(level);
row.add(new PrintableNodePosition(node, level, position));
level++;
int depthToUse = Math.min(depth,6);
int levelToUse = Math.min(level,6);
int offset = depthToUse - levelToUse-1;
offset = (int)(Math.pow(offset,Math.log(depthToUse)*1.4));
offset = Math.max(offset,3);
PrintableNodeInfo leftChild = node.getLeftChildInfo();
PrintableNodeInfo rightChild = node.getRightChildInfo();
if (leftChild != null){
this.addNode(leftChild,level,position-offset);
}
if (rightChild != null){
this.addNode(rightChild,level,position+offset);
}
}
private List<PrintableNodePosition> getRow(int row){
if (row > nodesByRow.size() - 1){
nodesByRow.add(new LinkedList<>());
}
return nodesByRow.get(row);
}
public void print(){
int max_chars = this.maxColumnsLeft+maxColumnsRight+1;
int level = 0;
String node_format = "%-"+this.maxTitleLength+"s";
for (List<PrintableNodePosition> pos_arr : this.nodesByRow){
String[] chars = this.getCharactersArray(pos_arr,max_chars);
String line = "";
int empty_chars = 0;
for (int i=0;i<chars.length+1;i++){
String value_i = i < chars.length ? chars[i]:null;
if (chars.length + 1 == i || value_i != null){
if (empty_chars > 0) {
System.out.print(String.format("%-" + empty_chars + "s", " "));
}
if (value_i != null){
System.out.print(String.format(node_format,value_i));
empty_chars = -1;
} else{
empty_chars = 0;
}
} else {
empty_chars++;
}
}
System.out.print("\n");
int depthToUse = Math.min(6,depth);
int line_offset = depthToUse - level;
line_offset *= 0.5;
line_offset = Math.max(0,line_offset);
for (int i=0;i<line_offset;i++){
System.out.println("");
}
level++;
}
}
private String[] getCharactersArray(List<PrintableNodePosition> nodes, int max_chars){
String[] positions = new String[max_chars+1];
for (PrintableNodePosition a : nodes){
int pos_i = maxColumnsLeft + a.column;
String title_i = a.nodeInfo.getTitleFormatted(this.maxTitleLength);
positions[pos_i] = title_i;
}
return positions;
}
}
NodeInfo类
package com.tomac120.NodePrinter;
/**
* Created by elijah on 6/28/16.
*/
public class PrintableNodeInfo {
public enum CLI_PRINT_COLOR {
RESET("\u001B[0m"),
BLACK("\u001B[30m"),
RED("\u001B[31m"),
GREEN("\u001B[32m"),
YELLOW("\u001B[33m"),
BLUE("\u001B[34m"),
PURPLE("\u001B[35m"),
CYAN("\u001B[36m"),
WHITE("\u001B[37m");
final String value;
CLI_PRINT_COLOR(String value){
this.value = value;
}
@Override
public String toString() {
return value;
}
}
private final String title;
private final PrintableNode leftChild;
private final PrintableNode rightChild;
private final CLI_PRINT_COLOR textColor;
public PrintableNodeInfo(String title, PrintableNode leftChild, PrintableNode rightChild){
this(title,leftChild,rightChild,CLI_PRINT_COLOR.BLACK);
}
public PrintableNodeInfo(String title, PrintableNode leftChild, PrintableNode righthild, CLI_PRINT_COLOR textColor){
this.title = title;
this.leftChild = leftChild;
this.rightChild = righthild;
this.textColor = textColor;
}
public String getTitle(){
return title;
}
public CLI_PRINT_COLOR getTextColor(){
return textColor;
}
public String getTitleFormatted(int max_chars){
return this.textColor+title+CLI_PRINT_COLOR.RESET;
/*
String title = this.title.length() > max_chars ? this.title.substring(0,max_chars+1):this.title;
boolean left = true;
while(title.length() < max_chars){
if (left){
title = " "+title;
} else {
title = title + " ";
}
}
return this.textColor+title+CLI_PRINT_COLOR.RESET;*/
}
public int getTitleLength(){
return title.length();
}
public PrintableNodeInfo getLeftChildInfo(){
if (leftChild == null){
return null;
}
return leftChild._getPrintableNodeInfo();
}
public PrintableNodeInfo getRightChildInfo(){
if (rightChild == null){
return null;
}
return rightChild._getPrintableNodeInfo();
}
}
NodePosition类
package com.tomac120.NodePrinter;
/**
* Created by elijah on 6/28/16.
*/
public class PrintableNodePosition implements Comparable<PrintableNodePosition> {
public final int row;
public final int column;
public final PrintableNodeInfo nodeInfo;
public PrintableNodePosition(PrintableNodeInfo nodeInfo, int row, int column){
this.row = row;
this.column = column;
this.nodeInfo = nodeInfo;
}
@Override
public int compareTo(PrintableNodePosition o) {
return Integer.compare(this.column,o.column);
}
}
最后是节点接口
package com.tomac120.NodePrinter;
/**
* Created by elijah on 6/28/16.
*/
public interface PrintableNode {
PrintableNodeInfo _getPrintableNodeInfo();
PrintableNode _getLeftChild();
PrintableNode _getRightChild();
}
其他回答
这是一个非常多功能的树打印机。不是最好看的,但能处理很多案子。如果你能弄清楚,可以随意添加斜杠。
package com.tomac120.NodePrinter;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
/**
* Created by elijah on 6/28/16.
*/
public class NodePrinter{
final private List<List<PrintableNodePosition>> nodesByRow;
int maxColumnsLeft = 0;
int maxColumnsRight = 0;
int maxTitleLength = 0;
String sep = " ";
int depth = 0;
public NodePrinter(PrintableNode rootNode, int chars_per_node){
this.setDepth(rootNode,1);
nodesByRow = new ArrayList<>(depth);
this.addNode(rootNode._getPrintableNodeInfo(),0,0);
for (int i = 0;i<chars_per_node;i++){
//sep += " ";
}
}
private void setDepth(PrintableNode info, int depth){
if (depth > this.depth){
this.depth = depth;
}
if (info._getLeftChild() != null){
this.setDepth(info._getLeftChild(),depth+1);
}
if (info._getRightChild() != null){
this.setDepth(info._getRightChild(),depth+1);
}
}
private void addNode(PrintableNodeInfo node, int level, int position){
if (position < 0 && -position > maxColumnsLeft){
maxColumnsLeft = -position;
}
if (position > 0 && position > maxColumnsRight){
maxColumnsRight = position;
}
if (node.getTitleLength() > maxTitleLength){
maxTitleLength = node.getTitleLength();
}
List<PrintableNodePosition> row = this.getRow(level);
row.add(new PrintableNodePosition(node, level, position));
level++;
int depthToUse = Math.min(depth,6);
int levelToUse = Math.min(level,6);
int offset = depthToUse - levelToUse-1;
offset = (int)(Math.pow(offset,Math.log(depthToUse)*1.4));
offset = Math.max(offset,3);
PrintableNodeInfo leftChild = node.getLeftChildInfo();
PrintableNodeInfo rightChild = node.getRightChildInfo();
if (leftChild != null){
this.addNode(leftChild,level,position-offset);
}
if (rightChild != null){
this.addNode(rightChild,level,position+offset);
}
}
private List<PrintableNodePosition> getRow(int row){
if (row > nodesByRow.size() - 1){
nodesByRow.add(new LinkedList<>());
}
return nodesByRow.get(row);
}
public void print(){
int max_chars = this.maxColumnsLeft+maxColumnsRight+1;
int level = 0;
String node_format = "%-"+this.maxTitleLength+"s";
for (List<PrintableNodePosition> pos_arr : this.nodesByRow){
String[] chars = this.getCharactersArray(pos_arr,max_chars);
String line = "";
int empty_chars = 0;
for (int i=0;i<chars.length+1;i++){
String value_i = i < chars.length ? chars[i]:null;
if (chars.length + 1 == i || value_i != null){
if (empty_chars > 0) {
System.out.print(String.format("%-" + empty_chars + "s", " "));
}
if (value_i != null){
System.out.print(String.format(node_format,value_i));
empty_chars = -1;
} else{
empty_chars = 0;
}
} else {
empty_chars++;
}
}
System.out.print("\n");
int depthToUse = Math.min(6,depth);
int line_offset = depthToUse - level;
line_offset *= 0.5;
line_offset = Math.max(0,line_offset);
for (int i=0;i<line_offset;i++){
System.out.println("");
}
level++;
}
}
private String[] getCharactersArray(List<PrintableNodePosition> nodes, int max_chars){
String[] positions = new String[max_chars+1];
for (PrintableNodePosition a : nodes){
int pos_i = maxColumnsLeft + a.column;
String title_i = a.nodeInfo.getTitleFormatted(this.maxTitleLength);
positions[pos_i] = title_i;
}
return positions;
}
}
NodeInfo类
package com.tomac120.NodePrinter;
/**
* Created by elijah on 6/28/16.
*/
public class PrintableNodeInfo {
public enum CLI_PRINT_COLOR {
RESET("\u001B[0m"),
BLACK("\u001B[30m"),
RED("\u001B[31m"),
GREEN("\u001B[32m"),
YELLOW("\u001B[33m"),
BLUE("\u001B[34m"),
PURPLE("\u001B[35m"),
CYAN("\u001B[36m"),
WHITE("\u001B[37m");
final String value;
CLI_PRINT_COLOR(String value){
this.value = value;
}
@Override
public String toString() {
return value;
}
}
private final String title;
private final PrintableNode leftChild;
private final PrintableNode rightChild;
private final CLI_PRINT_COLOR textColor;
public PrintableNodeInfo(String title, PrintableNode leftChild, PrintableNode rightChild){
this(title,leftChild,rightChild,CLI_PRINT_COLOR.BLACK);
}
public PrintableNodeInfo(String title, PrintableNode leftChild, PrintableNode righthild, CLI_PRINT_COLOR textColor){
this.title = title;
this.leftChild = leftChild;
this.rightChild = righthild;
this.textColor = textColor;
}
public String getTitle(){
return title;
}
public CLI_PRINT_COLOR getTextColor(){
return textColor;
}
public String getTitleFormatted(int max_chars){
return this.textColor+title+CLI_PRINT_COLOR.RESET;
/*
String title = this.title.length() > max_chars ? this.title.substring(0,max_chars+1):this.title;
boolean left = true;
while(title.length() < max_chars){
if (left){
title = " "+title;
} else {
title = title + " ";
}
}
return this.textColor+title+CLI_PRINT_COLOR.RESET;*/
}
public int getTitleLength(){
return title.length();
}
public PrintableNodeInfo getLeftChildInfo(){
if (leftChild == null){
return null;
}
return leftChild._getPrintableNodeInfo();
}
public PrintableNodeInfo getRightChildInfo(){
if (rightChild == null){
return null;
}
return rightChild._getPrintableNodeInfo();
}
}
NodePosition类
package com.tomac120.NodePrinter;
/**
* Created by elijah on 6/28/16.
*/
public class PrintableNodePosition implements Comparable<PrintableNodePosition> {
public final int row;
public final int column;
public final PrintableNodeInfo nodeInfo;
public PrintableNodePosition(PrintableNodeInfo nodeInfo, int row, int column){
this.row = row;
this.column = column;
this.nodeInfo = nodeInfo;
}
@Override
public int compareTo(PrintableNodePosition o) {
return Integer.compare(this.column,o.column);
}
}
最后是节点接口
package com.tomac120.NodePrinter;
/**
* Created by elijah on 6/28/16.
*/
public interface PrintableNode {
PrintableNodeInfo _getPrintableNodeInfo();
PrintableNode _getLeftChild();
PrintableNode _getRightChild();
}
你的树每一层需要两倍的距离:
a / \ / \ / \ / \ b c / \ / \ / \ / \ d e f g / \ / \ / \ / \ h i j k l m n o
你可以将你的树保存在一个数组的数组中,每个数组对应一个深度:
[[a],[b,c],[d,e,f,g],[h,i,j,k,l,m,n,o]]
如果你的树没有满,你需要在数组中包含空值:
a / \ / \ / \ / \ b c / \ / \ / \ / \ d e f g / \ \ / \ \ h i k l m o [[a],[b,c],[d,e,f,g],[h,i, ,k,l,m, ,o]]
然后你可以遍历数组来打印你的树,根据深度打印第一个元素之前和元素之间的空格,根据下一层数组中对应的元素是否被填充打印行。 如果您的值可以超过一个字符长,您需要在创建数组表示时找到最长的值,并相应地乘以所有宽度和行数。
我需要在我的一个项目中打印一个二叉树,为此我准备了一个java类TreePrinter,其中一个示例输出是:
[+]
/ \
/ \
/ \
/ \
/ \
[*] \
/ \ [-]
[speed] [2] / \
[45] [12]
下面是TreePrinter类和TextNode类的代码。为了打印任何树,你可以用TextNode类创建一个等效的树。
import java.util.ArrayList;
public class TreePrinter {
public TreePrinter(){
}
public static String TreeString(TextNode root){
ArrayList layers = new ArrayList();
ArrayList bottom = new ArrayList();
FillBottom(bottom, root); DrawEdges(root);
int height = GetHeight(root);
for(int i = 0; i s.length()) min = s.length();
if(!n.isEdge) s += "[";
s += n.text;
if(!n.isEdge) s += "]";
layers.set(n.depth, s);
}
StringBuilder sb = new StringBuilder();
for(int i = 0; i temp = new ArrayList();
for(int i = 0; i 0) temp.get(i-1).left = x;
temp.add(x);
}
temp.get(count-1).left = n.left;
n.left.depth = temp.get(count-1).depth+1;
n.left = temp.get(0);
DrawEdges(temp.get(count-1).left);
}
if(n.right != null){
int count = n.right.x - (n.x + n.text.length() + 2);
ArrayList temp = new ArrayList();
for(int i = 0; i 0) temp.get(i-1).right = x;
temp.add(x);
}
temp.get(count-1).right = n.right;
n.right.depth = temp.get(count-1).depth+1;
n.right = temp.get(0);
DrawEdges(temp.get(count-1).right);
}
}
private static void FillBottom(ArrayList bottom, TextNode n){
if(n == null) return;
FillBottom(bottom, n.left);
if(!bottom.isEmpty()){
int i = bottom.size()-1;
while(bottom.get(i).isEdge) i--;
TextNode last = bottom.get(i);
if(!n.isEdge) n.x = last.x + last.text.length() + 3;
}
bottom.add(n);
FillBottom(bottom, n.right);
}
private static boolean isLeaf(TextNode n){
return (n.left == null && n.right == null);
}
private static int GetHeight(TextNode n){
if(n == null) return 0;
int l = GetHeight(n.left);
int r = GetHeight(n.right);
return Math.max(l, r) + 1;
}
}
class TextNode {
public String text;
public TextNode parent, left, right;
public boolean isEdge;
public int x, depth;
public TextNode(String text){
this.text = text;
parent = null; left = null; right = null;
isEdge = false;
x = 0; depth = 0;
}
}
最后,这里是一个打印给定样本的测试类:
public class Test {
public static void main(String[] args){
TextNode root = new TextNode("+");
root.left = new TextNode("*"); root.left.parent = root;
root.right = new TextNode("-"); root.right.parent = root;
root.left.left = new TextNode("speed"); root.left.left.parent = root.left;
root.left.right = new TextNode("2"); root.left.right.parent = root.left;
root.right.left = new TextNode("45"); root.right.left.parent = root.right;
root.right.right = new TextNode("12"); root.right.right.parent = root.right;
System.out.println(TreePrinter.TreeString(root));
}
}
一个Scala解决方案,改编自Vasya Novikov的答案,专门用于二叉树:
/** An immutable Binary Tree. */
case class BTree[T](value: T, left: Option[BTree[T]], right: Option[BTree[T]]) {
/* Adapted from: http://stackoverflow.com/a/8948691/643684 */
def pretty: String = {
def work(tree: BTree[T], prefix: String, isTail: Boolean): String = {
val (line, bar) = if (isTail) ("└── ", " ") else ("├── ", "│")
val curr = s"${prefix}${line}${tree.value}"
val rights = tree.right match {
case None => s"${prefix}${bar} ├── ∅"
case Some(r) => work(r, s"${prefix}${bar} ", false)
}
val lefts = tree.left match {
case None => s"${prefix}${bar} └── ∅"
case Some(l) => work(l, s"${prefix}${bar} ", true)
}
s"${curr}\n${rights}\n${lefts}"
}
work(this, "", true)
}
}
与垂直表示相比,水平表示有点复杂。垂直打印只是简单的RNL(右->节点->左或镜像的顺序)遍历,以便先打印右子树,然后打印左子树。
def printFullTree(root, delim=' ', idnt=[], left=None):
if root:
idnt.append(delim)
x, y = setDelims(left)
printFullTree(root.right, x, idnt, False)
indent2(root.val, idnt)
printFullTree(root.left, y, idnt, True)
idnt.pop()
def setDelims(left):
x = ' '; y='|'
return (y,x) if (left == True) else (x,y) if (left == False) else (x,x)
def indent2(x, idnt, width=6):
for delim in idnt:
print(delim + ' '*(width-1), end='')
print('|->', x)
output:
|-> 15
|-> 14
| |-> 13
|-> 12
| | |-> 11
| |-> 10
| |-> 9
|-> 8
| |-> 7
| |-> 6
| | |-> 4
|-> 3
| |-> 2
|-> 1
|-> 0
在水平表示中,显示由TreeMap的HashMap或HashMap<Integer, TreeMap<Integer, Object>> xy构建;其中HashMap包含节点的y轴/level_no作为Key, TreeMap作为value。Treemap内部保存同一级别的所有节点,按它们的x轴值排序,作为键,从最左端开始-ve,根=0,最右端=+ve。
如果使用自平衡树/Treap,则使用HashMap使算法在每个级别的O(1)查找中工作,并在O(logn)中使用TreeMap排序。
不过,在这样做的时候,不要忘记为空子存储占位符,例如' '/空格,这样树看起来就像预期的那样。
现在唯一剩下的就是计算水平节点的距离,这可以用一些数学计算来完成,
计算树的宽度和高度。 一旦完成,在显示节点时,根据计算的宽度,高度和倾斜信息(如果有的话),以最佳距离呈现它们。