我一直认为std::vector是“作为数组实现的”,等等等等。今天我去测试了一下,结果似乎不是这样:

以下是一些测试结果:

UseArray completed in 2.619 seconds
UseVector completed in 9.284 seconds
UseVectorPushBack completed in 14.669 seconds
The whole thing completed in 26.591 seconds

这大约要慢3 - 4倍!这并不能证明“向量可能会慢几纳秒”的评论是正确的。

我使用的代码是:

#include <cstdlib>
#include <vector>

#include <iostream>
#include <string>

#include <boost/date_time/posix_time/ptime.hpp>
#include <boost/date_time/microsec_time_clock.hpp>

class TestTimer
{
    public:
        TestTimer(const std::string & name) : name(name),
            start(boost::date_time::microsec_clock<boost::posix_time::ptime>::local_time())
        {
        }

        ~TestTimer()
        {
            using namespace std;
            using namespace boost;

            posix_time::ptime now(date_time::microsec_clock<posix_time::ptime>::local_time());
            posix_time::time_duration d = now - start;

            cout << name << " completed in " << d.total_milliseconds() / 1000.0 <<
                " seconds" << endl;
        }

    private:
        std::string name;
        boost::posix_time::ptime start;
};

struct Pixel
{
    Pixel()
    {
    }

    Pixel(unsigned char r, unsigned char g, unsigned char b) : r(r), g(g), b(b)
    {
    }

    unsigned char r, g, b;
};

void UseVector()
{
    TestTimer t("UseVector");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel> pixels;
        pixels.resize(dimension * dimension);

        for(int i = 0; i < dimension * dimension; ++i)
        {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = 0;
        }
    }
}

void UseVectorPushBack()
{
    TestTimer t("UseVectorPushBack");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel> pixels;
            pixels.reserve(dimension * dimension);

        for(int i = 0; i < dimension * dimension; ++i)
            pixels.push_back(Pixel(255, 0, 0));
    }
}

void UseArray()
{
    TestTimer t("UseArray");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        Pixel * pixels = (Pixel *)malloc(sizeof(Pixel) * dimension * dimension);

        for(int i = 0 ; i < dimension * dimension; ++i)
        {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = 0;
        }

        free(pixels);
    }
}

int main()
{
    TestTimer t1("The whole thing");

    UseArray();
    UseVector();
    UseVectorPushBack();

    return 0;
}

我做错了吗?还是我刚刚打破了这个性能神话?

我使用Visual Studio 2005中的发布模式。


在Visual c++中,#define _SECURE_SCL 0将UseVector减少了一半(减少到4秒)。在我看来,这真的是件大事。


当前回答

这似乎取决于编译器标志。下面是一个基准代码:

#include <chrono>
#include <cmath>
#include <ctime>
#include <iostream>
#include <vector>


int main(){

    int size = 1000000; // reduce this number in case your program crashes
    int L = 10;

    std::cout << "size=" << size << " L=" << L << std::endl;
    {
        srand( time(0) );
        double * data = new double[size];
        double result = 0.;
        std::chrono::steady_clock::time_point start = std::chrono::steady_clock::now();
        for( int l = 0; l < L; l++ ) {
            for( int i = 0; i < size; i++ ) data[i] = rand() % 100;
            for( int i = 0; i < size; i++ ) result += data[i] * data[i];
        }
        std::chrono::steady_clock::time_point end   = std::chrono::steady_clock::now();
        auto duration = std::chrono::duration_cast<std::chrono::microseconds>(end - start).count();
        std::cout << "Calculation result is " << sqrt(result) << "\n";
        std::cout << "Duration of C style heap array:    " << duration << "ms\n";
        delete data;
    }

    {
        srand( 1 + time(0) );
        double data[size]; // technically, non-compliant with C++ standard.
        double result = 0.;
        std::chrono::steady_clock::time_point start = std::chrono::steady_clock::now();
        for( int l = 0; l < L; l++ ) {
            for( int i = 0; i < size; i++ ) data[i] = rand() % 100;
            for( int i = 0; i < size; i++ ) result += data[i] * data[i];
        }
        std::chrono::steady_clock::time_point end   = std::chrono::steady_clock::now();
        auto duration = std::chrono::duration_cast<std::chrono::microseconds>(end - start).count();
        std::cout << "Calculation result is " << sqrt(result) << "\n";
        std::cout << "Duration of C99 style stack array: " << duration << "ms\n";
    }

    {
        srand( 2 + time(0) );
        std::vector<double> data( size );
        double result = 0.;
        std::chrono::steady_clock::time_point start = std::chrono::steady_clock::now();
        for( int l = 0; l < L; l++ ) {
            for( int i = 0; i < size; i++ ) data[i] = rand() % 100;
            for( int i = 0; i < size; i++ ) result += data[i] * data[i];
        }
        std::chrono::steady_clock::time_point end   = std::chrono::steady_clock::now();
        auto duration = std::chrono::duration_cast<std::chrono::microseconds>(end - start).count();
        std::cout << "Calculation result is " << sqrt(result) << "\n";
        std::cout << "Duration of std::vector array:     " << duration << "ms\n";
    }

    return 0;
}

不同的优化标志给出不同的答案:

$ g++ -O0 benchmark.cpp 
$ ./a.out 
size=1000000 L=10
Calculation result is 181182
Duration of C style heap array:    118441ms
Calculation result is 181240
Duration of C99 style stack array: 104920ms
Calculation result is 181210
Duration of std::vector array:     124477ms
$g++ -O3 benchmark.cpp
$ ./a.out 
size=1000000 L=10
Calculation result is 181213
Duration of C style heap array:    107803ms
Calculation result is 181198
Duration of C99 style stack array: 87247ms
Calculation result is 181204
Duration of std::vector array:     89083ms
$ g++ -Ofast benchmark.cpp 
$ ./a.out 
size=1000000 L=10
Calculation result is 181164
Duration of C style heap array:    93530ms
Calculation result is 181179
Duration of C99 style stack array: 80620ms
Calculation result is 181191
Duration of std::vector array:     78830ms

您的确切结果会有所不同,但这在我的机器上是非常典型的。

其他回答

使用以下方法:

g++ -O3 Time.cpp -I <MyBoost> . cfg . / a.o ut UseArray完成用时2.196秒 UseVector在4.412秒内完成 UseVectorPushBack在8.017秒内完成 全程用时14.626秒

数组的速度是向量的两倍。

但在更详细地查看代码后,这是预期的;当你遍历向量两次,只遍历数组一次时。注意:当你调整vector的size()时,你不仅是在分配内存,而且还在遍历vector并调用每个成员的构造函数。

稍微重新排列代码,使vector只初始化每个对象一次:

 std::vector<Pixel>  pixels(dimensions * dimensions, Pixel(255,0,0));

现在再做一次同样的计时:

g++ -O3 Time.cpp -I <MyBoost> . cfg . / a.o ut UseVector在2.216秒内完成

vector现在的性能只比数组差一点点。在我看来,这种差异是微不足道的,可能是由一大堆与测试无关的事情造成的。

我也会考虑到,你没有正确初始化/销毁像素对象在UseArrray()方法的构造函数/析构函数都没有被调用(这可能不是这个简单的类的问题,但任何稍微复杂(即指针或指针成员)将导致问题。

我不得不说我不是c++方面的专家。但要补充一些实验结果:

编译: gcc-6.2.0/bin/g++ -O3 -std=c++14 vector.cpp

机:

Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz 

OS:

2.6.32-642.13.1.el6.x86_64

输出:

UseArray completed in 0.167821 seconds
UseVector completed in 0.134402 seconds
UseConstructor completed in 0.134806 seconds
UseFillConstructor completed in 1.00279 seconds
UseVectorPushBack completed in 6.6887 seconds
The whole thing completed in 8.12888 seconds

这里我唯一感到奇怪的是“UseFillConstructor”的性能与“UseConstructor”相比。

代码:

void UseConstructor()
{
    TestTimer t("UseConstructor");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel> pixels(dimension*dimension);
        for(int i = 0; i < dimension * dimension; ++i)
        {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = 0;
        }
    }
}


void UseFillConstructor()
{
    TestTimer t("UseFillConstructor");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel> pixels(dimension*dimension, Pixel(255,0,0));
    }
}

因此提供的额外“值”大大降低了性能,我认为这是由于多次调用复制构造函数造成的。但是…

编译:

gcc-6.2.0/bin/g++ -std=c++14 -O vector.cpp

输出:

UseArray completed in 1.02464 seconds
UseVector completed in 1.31056 seconds
UseConstructor completed in 1.47413 seconds
UseFillConstructor completed in 1.01555 seconds
UseVectorPushBack completed in 6.9597 seconds
The whole thing completed in 11.7851 seconds

因此,在这种情况下,gcc优化非常重要,但当一个值作为默认值提供时,它帮不了你太多。这,其实是对我的学费。希望它能帮助新程序员选择哪种矢量初始化格式。

我只是想提一下vector(和smart_ptr)只是原始数组(和原始指针)上的一个薄层。 实际上在连续存储器中向量的访问时间比数组快。 下面的代码显示了初始化和访问向量和数组的结果。

#include <boost/date_time/posix_time/posix_time.hpp>
#include <iostream>
#include <vector>
#define SIZE 20000
int main() {
    srand (time(NULL));
    vector<vector<int>> vector2d;
    vector2d.reserve(SIZE);
    int index(0);
    boost::posix_time::ptime start_total = boost::posix_time::microsec_clock::local_time();
    //  timer start - build + access
    for (int i = 0; i < SIZE; i++) {
        vector2d.push_back(vector<int>(SIZE));
    }
    boost::posix_time::ptime start_access = boost::posix_time::microsec_clock::local_time();
    //  timer start - access
    for (int i = 0; i < SIZE; i++) {
        index = rand()%SIZE;
        for (int j = 0; j < SIZE; j++) {

            vector2d[index][index]++;
        }
    }
    boost::posix_time::ptime end = boost::posix_time::microsec_clock::local_time();
    boost::posix_time::time_duration msdiff = end - start_total;
    cout << "Vector total time: " << msdiff.total_milliseconds() << "milliseconds.\n";
    msdiff = end - start_acess;
    cout << "Vector access time: " << msdiff.total_milliseconds() << "milliseconds.\n"; 


    int index(0);
    int** raw2d = nullptr;
    raw2d = new int*[SIZE];
    start_total = boost::posix_time::microsec_clock::local_time();
    //  timer start - build + access
    for (int i = 0; i < SIZE; i++) {
        raw2d[i] = new int[SIZE];
    }
    start_access = boost::posix_time::microsec_clock::local_time();
    //  timer start - access
    for (int i = 0; i < SIZE; i++) {
        index = rand()%SIZE;
        for (int j = 0; j < SIZE; j++) {

            raw2d[index][index]++;
        }
    }
    end = boost::posix_time::microsec_clock::local_time();
    msdiff = end - start_total;
    cout << "Array total time: " << msdiff.total_milliseconds() << "milliseconds.\n";
    msdiff = end - start_acess;
    cout << "Array access time: " << msdiff.total_milliseconds() << "milliseconds.\n"; 
    for (int i = 0; i < SIZE; i++) {
        delete [] raw2d[i];
    }
    return 0;
}

输出结果为:

    Vector total time: 925milliseconds.
    Vector access time: 4milliseconds.
    Array total time: 30milliseconds.
    Array access time: 21milliseconds.

所以如果使用得当,速度几乎是一样的。 (正如其他人提到的使用reserve()或resize())。

我的笔记本电脑是联想G770 (4gb内存)。

操作系统为Windows 7 64位(笔记本电脑版本)

编译器是MinGW 4.6.1。

IDE为Code::Blocks。

我测试了第一篇文章的源代码。

结果

O2优化

UseArray完成用时2.841秒

UseVector在2.548秒内完成

UseVectorPushBack在11.95秒内完成

全程用时17.342秒

系统暂停

O3优化

UseArray完成用时1.452秒

UseVector在2.514秒内完成

UseVectorPushBack在12.967秒内完成

全程用时16.937秒

在O3优化下,向量的性能更差。

如果你把循环改为

    pixels[i].r = i;
    pixels[i].g = i;
    pixels[i].b = i;

在O2和O3下,数组和矢量的速度几乎相同。

顺便说一下,你在使用vector的类中看到的减速也发生在标准类型中,比如int。这是一个多线程代码:

#include <iostream>
#include <cstdio>
#include <map>
#include <string>
#include <typeinfo>
#include <vector>
#include <pthread.h>
#include <sstream>
#include <fstream>
using namespace std;

//pthread_mutex_t map_mutex=PTHREAD_MUTEX_INITIALIZER;

long long num=500000000;
int procs=1;

struct iterate
{
    int id;
    int num;
    void * member;
    iterate(int a, int b, void *c) : id(a), num(b), member(c) {}
};

//fill out viterate and piterate
void * viterate(void * input)
{
    printf("am in viterate\n");
    iterate * info=static_cast<iterate *> (input);
    // reproduce member type
    vector<int> test= *static_cast<vector<int>*> (info->member);
    for (int i=info->id; i<test.size(); i+=info->num)
    {
        //printf("am in viterate loop\n");
        test[i];
    }
    pthread_exit(NULL);
}

void * piterate(void * input)
{
    printf("am in piterate\n");
    iterate * info=static_cast<iterate *> (input);;
    int * test=static_cast<int *> (info->member);
    for (int i=info->id; i<num; i+=info->num) {
        //printf("am in piterate loop\n");
        test[i];
    }
    pthread_exit(NULL);
}

int main()
{
    cout<<"producing vector of size "<<num<<endl;
    vector<int> vtest(num);
    cout<<"produced  a vector of size "<<vtest.size()<<endl;
    pthread_t thread[procs];

    iterate** it=new iterate*[procs];
    int ans;
    void *status;

    cout<<"begining to thread through the vector\n";
    for (int i=0; i<procs; i++) {
        it[i]=new iterate(i, procs, (void *) &vtest);
    //  ans=pthread_create(&thread[i],NULL,viterate, (void *) it[i]);
    }
    for (int i=0; i<procs; i++) {
        pthread_join(thread[i], &status);
    }
    cout<<"end of threading through the vector";
    //reuse the iterate structures

    cout<<"producing a pointer with size "<<num<<endl;
    int * pint=new int[num];
    cout<<"produced a pointer with size "<<num<<endl;

    cout<<"begining to thread through the pointer\n";
    for (int i=0; i<procs; i++) {
        it[i]->member=&pint;
        ans=pthread_create(&thread[i], NULL, piterate, (void*) it[i]);
    }
    for (int i=0; i<procs; i++) {
        pthread_join(thread[i], &status);
    }
    cout<<"end of threading through the pointer\n";

    //delete structure array for iterate
    for (int i=0; i<procs; i++) {
        delete it[i];
    }
    delete [] it;

    //delete pointer
    delete [] pint;

    cout<<"end of the program"<<endl;
    return 0;
}

代码中的行为表明vector的实例化是代码中最长的部分。一旦你通过瓶颈。其余的代码运行得非常快。无论在多少个线程上运行,这都是正确的。

顺便说一下,忽略那些疯狂的包含数。我一直在使用这段代码来测试一个项目的东西,所以包含的数量不断增长。