我一直认为std::vector是“作为数组实现的”,等等等等。今天我去测试了一下,结果似乎不是这样:

以下是一些测试结果:

UseArray completed in 2.619 seconds
UseVector completed in 9.284 seconds
UseVectorPushBack completed in 14.669 seconds
The whole thing completed in 26.591 seconds

这大约要慢3 - 4倍!这并不能证明“向量可能会慢几纳秒”的评论是正确的。

我使用的代码是:

#include <cstdlib>
#include <vector>

#include <iostream>
#include <string>

#include <boost/date_time/posix_time/ptime.hpp>
#include <boost/date_time/microsec_time_clock.hpp>

class TestTimer
{
    public:
        TestTimer(const std::string & name) : name(name),
            start(boost::date_time::microsec_clock<boost::posix_time::ptime>::local_time())
        {
        }

        ~TestTimer()
        {
            using namespace std;
            using namespace boost;

            posix_time::ptime now(date_time::microsec_clock<posix_time::ptime>::local_time());
            posix_time::time_duration d = now - start;

            cout << name << " completed in " << d.total_milliseconds() / 1000.0 <<
                " seconds" << endl;
        }

    private:
        std::string name;
        boost::posix_time::ptime start;
};

struct Pixel
{
    Pixel()
    {
    }

    Pixel(unsigned char r, unsigned char g, unsigned char b) : r(r), g(g), b(b)
    {
    }

    unsigned char r, g, b;
};

void UseVector()
{
    TestTimer t("UseVector");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel> pixels;
        pixels.resize(dimension * dimension);

        for(int i = 0; i < dimension * dimension; ++i)
        {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = 0;
        }
    }
}

void UseVectorPushBack()
{
    TestTimer t("UseVectorPushBack");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel> pixels;
            pixels.reserve(dimension * dimension);

        for(int i = 0; i < dimension * dimension; ++i)
            pixels.push_back(Pixel(255, 0, 0));
    }
}

void UseArray()
{
    TestTimer t("UseArray");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        Pixel * pixels = (Pixel *)malloc(sizeof(Pixel) * dimension * dimension);

        for(int i = 0 ; i < dimension * dimension; ++i)
        {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = 0;
        }

        free(pixels);
    }
}

int main()
{
    TestTimer t1("The whole thing");

    UseArray();
    UseVector();
    UseVectorPushBack();

    return 0;
}

我做错了吗?还是我刚刚打破了这个性能神话?

我使用Visual Studio 2005中的发布模式。


在Visual c++中,#define _SECURE_SCL 0将UseVector减少了一半(减少到4秒)。在我看来,这真的是件大事。


当前回答

我做了一些长期以来一直想做的广泛测试。不妨分享一下。

这是我的双启动机i7-3770, 16GB Ram, x86_64, Windows 8.1和Ubuntu 16.04。更多信息和结论,备注如下。测试了MSVS 2017和g++(在Windows和Linux上)。

测试程序

#include <iostream>
#include <chrono>
//#include <algorithm>
#include <array>
#include <locale>
#include <vector>
#include <queue>
#include <deque>

// Note: total size of array must not exceed 0x7fffffff B = 2,147,483,647B
//  which means that largest int array size is 536,870,911
// Also image size cannot be larger than 80,000,000B
constexpr int long g_size = 100000;
int g_A[g_size];


int main()
{
    std::locale loc("");
    std::cout.imbue(loc);
    constexpr int long size = 100000;  // largest array stack size

    // stack allocated c array
    std::chrono::steady_clock::time_point start = std::chrono::steady_clock::now();
    int A[size];
    for (int i = 0; i < size; i++)
        A[i] = i;

    auto duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "c-style stack array duration=" << duration / 1000.0 << "ms\n";
    std::cout << "c-style stack array size=" << sizeof(A) << "B\n\n";

    // global stack c array
    start = std::chrono::steady_clock::now();
    for (int i = 0; i < g_size; i++)
        g_A[i] = i;

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "global c-style stack array duration=" << duration / 1000.0 << "ms\n";
    std::cout << "global c-style stack array size=" << sizeof(g_A) << "B\n\n";

    // raw c array heap array
    start = std::chrono::steady_clock::now();
    int* AA = new int[size];    // bad_alloc() if it goes higher than 1,000,000,000
    for (int i = 0; i < size; i++)
        AA[i] = i;

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "c-style heap array duration=" << duration / 1000.0 << "ms\n";
    std::cout << "c-style heap array size=" << sizeof(AA) << "B\n\n";
    delete[] AA;

    // std::array<>
    start = std::chrono::steady_clock::now();
    std::array<int, size> AAA;
    for (int i = 0; i < size; i++)
        AAA[i] = i;
    //std::sort(AAA.begin(), AAA.end());

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "std::array duration=" << duration / 1000.0 << "ms\n";
    std::cout << "std::array size=" << sizeof(AAA) << "B\n\n";

    // std::vector<>
    start = std::chrono::steady_clock::now();
    std::vector<int> v;
    for (int i = 0; i < size; i++)
        v.push_back(i);
    //std::sort(v.begin(), v.end());

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "std::vector duration=" << duration / 1000.0 << "ms\n";
    std::cout << "std::vector size=" << v.size() * sizeof(v.back()) << "B\n\n";

    // std::deque<>
    start = std::chrono::steady_clock::now();
    std::deque<int> dq;
    for (int i = 0; i < size; i++)
        dq.push_back(i);
    //std::sort(dq.begin(), dq.end());

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "std::deque duration=" << duration / 1000.0 << "ms\n";
    std::cout << "std::deque size=" << dq.size() * sizeof(dq.back()) << "B\n\n";

    // std::queue<>
    start = std::chrono::steady_clock::now();
    std::queue<int> q;
    for (int i = 0; i < size; i++)
        q.push(i);

    duration = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::steady_clock::now() - start).count();
    std::cout << "std::queue duration=" << duration / 1000.0 << "ms\n";
    std::cout << "std::queue size=" << q.size() * sizeof(q.front()) << "B\n\n";
}

结果

//////////////////////////////////////////////////////////////////////////////////////////
// with MSVS 2017:
// >> cl /std:c++14 /Wall -O2 array_bench.cpp
//
// c-style stack array duration=0.15ms
// c-style stack array size=400,000B
//
// global c-style stack array duration=0.130ms
// global c-style stack array size=400,000B
//
// c-style heap array duration=0.90ms
// c-style heap array size=4B
//
// std::array duration=0.20ms
// std::array size=400,000B
//
// std::vector duration=0.544ms
// std::vector size=400,000B
//
// std::deque duration=1.375ms
// std::deque size=400,000B
//
// std::queue duration=1.491ms
// std::queue size=400,000B
//
//////////////////////////////////////////////////////////////////////////////////////////
//
// with g++ version:
//      - (tdm64-1) 5.1.0 on Windows
//      - (Ubuntu 5.4.0-6ubuntu1~16.04.10) 5.4.0 20160609 on Ubuntu 16.04
// >> g++ -std=c++14 -Wall -march=native -O2 array_bench.cpp -o array_bench
//
// c-style stack array duration=0ms
// c-style stack array size=400,000B
//
// global c-style stack array duration=0.124ms
// global c-style stack array size=400,000B
//
// c-style heap array duration=0.648ms
// c-style heap array size=8B
//
// std::array duration=1ms
// std::array size=400,000B
//
// std::vector duration=0.402ms
// std::vector size=400,000B
//
// std::deque duration=0.234ms
// std::deque size=400,000B
//
// std::queue duration=0.304ms
// std::queue size=400,000
//
//////////////////////////////////////////////////////////////////////////////////////////

笔记

平均10次组装。 我最初也使用std::sort()执行测试(您可以看到它被注释掉了),但后来删除了它们,因为没有显著的相对差异。

我的结论和评论

notice how global c-style array takes almost as much time as the heap c-style array Out of all tests I noticed a remarkable stability in std::array's time variations between consecutive runs, while others especially std:: data structs varied wildly in comparison O3 optimization didn't show any noteworthy time differences Removing optimization on Windows cl (no -O2) and on g++ (Win/Linux no -O2, no -march=native) increases times SIGNIFICANTLY. Particularly for std::data structs. Overall higher times on MSVS than g++, but std::array and c-style arrays faster on Windows without optimization g++ produces faster code than microsoft's compiler (apparently it runs faster even on Windows).

判决

当然,这是用于优化构建的代码。既然问题是关于std::vector,那么是的,它是!比普通数组(优化/未优化)慢。但是当您进行基准测试时,您自然希望生成优化的代码。

对我来说,这个节目的明星是std::array。

其他回答

试试这个:

void UseVectorCtor()
{
    TestTimer t("UseConstructor");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel> pixels(dimension * dimension, Pixel(255, 0, 0));
    }
}

我得到了和数组几乎完全一样的性能。

The thing about vector is that it's a much more general tool than an array. And that means you have to consider how you use it. It can be used in a lot of different ways, providing functionality that an array doesn't even have. And if you use it "wrong" for your purpose, you incur a lot of overhead, but if you use it correctly, it is usually basically a zero-overhead data structure. In this case, the problem is that you separately initialized the vector (causing all elements to have their default ctor called), and then overwriting each element individually with the correct value. That is much harder for the compiler to optimize away than when you do the same thing with an array. Which is why the vector provides a constructor which lets you do exactly that: initialize N elements with value X.

当你使用它时,向量和数组一样快。

所以,你还没有打破性能神话。但是你已经证明了只有当你最优地使用向量时它才成立,这也是一个很好的观点。:)

好的一面是,它确实是最简单的用法,但却是最快的。如果您将我的代码片段(一行)与John Kugelman的答案进行对比,其中包含大量的调整和优化,但仍然不能完全消除性能差异,很明显,vector的设计非常巧妙。你不必费尽周折才能得到等于数组的速度。相反,您必须使用最简单的解决方案。

Martin York的回答让我很困扰,因为他似乎试图掩盖初始化问题。但他将冗余的默认构造确定为性能问题的根源是正确的。

[编辑:Martin的回答不再建议更改默认构造函数。]

对于眼前的问题,你当然可以调用2参数版本的向量<Pixel> ctor:

std::vector<Pixel> pixels(dimension * dimension, Pixel(255, 0, 0));

如果你想用一个常数值初始化,这是一种常见的情况。但更普遍的问题是:如何有效地初始化比常数值更复杂的东西?

为此,您可以使用back_insert_iterator,这是一个迭代器适配器。这里有一个int类型的向量的例子,尽管一般的思想也适用于像素:

#include <iterator>
// Simple functor return a list of squares: 1, 4, 9, 16...
struct squares {
    squares() { i = 0; }
    int operator()() const { ++i; return i * i; }

private:
    int i;
};

...

std::vector<int> v;
v.reserve(someSize);     // To make insertions efficient
std::generate_n(std::back_inserter(v), someSize, squares());

或者,您可以使用copy()或transform()来代替generate_n()。

缺点是,构造初始值的逻辑需要移动到一个单独的类中,这比将其放在原位更不方便(尽管c++ 1x中的lambdas使这更好)。此外,我希望这仍然不会像基于malloc()的非stl版本那样快,但我希望它会接近,因为它只对每个元素进行一次构造。

我的笔记本电脑是联想G770 (4gb内存)。

操作系统为Windows 7 64位(笔记本电脑版本)

编译器是MinGW 4.6.1。

IDE为Code::Blocks。

我测试了第一篇文章的源代码。

结果

O2优化

UseArray完成用时2.841秒

UseVector在2.548秒内完成

UseVectorPushBack在11.95秒内完成

全程用时17.342秒

系统暂停

O3优化

UseArray完成用时1.452秒

UseVector在2.514秒内完成

UseVectorPushBack在12.967秒内完成

全程用时16.937秒

在O3优化下,向量的性能更差。

如果你把循环改为

    pixels[i].r = i;
    pixels[i].g = i;
    pixels[i].b = i;

在O2和O3下,数组和矢量的速度几乎相同。

使用以下方法:

g++ -O3 Time.cpp -I <MyBoost> . cfg . / a.o ut UseArray完成用时2.196秒 UseVector在4.412秒内完成 UseVectorPushBack在8.017秒内完成 全程用时14.626秒

数组的速度是向量的两倍。

但在更详细地查看代码后,这是预期的;当你遍历向量两次,只遍历数组一次时。注意:当你调整vector的size()时,你不仅是在分配内存,而且还在遍历vector并调用每个成员的构造函数。

稍微重新排列代码,使vector只初始化每个对象一次:

 std::vector<Pixel>  pixels(dimensions * dimensions, Pixel(255,0,0));

现在再做一次同样的计时:

g++ -O3 Time.cpp -I <MyBoost> . cfg . / a.o ut UseVector在2.216秒内完成

vector现在的性能只比数组差一点点。在我看来,这种差异是微不足道的,可能是由一大堆与测试无关的事情造成的。

我也会考虑到,你没有正确初始化/销毁像素对象在UseArrray()方法的构造函数/析构函数都没有被调用(这可能不是这个简单的类的问题,但任何稍微复杂(即指针或指针成员)将导致问题。

一个更好的基准测试(我认为…),编译器由于优化可以改变代码,因为分配的向量/数组的结果不会在任何地方使用。 结果:

$ g++ test.cpp -o test -O3 -march=native
$ ./test 
UseArray inner completed in 0.652 seconds
UseArray completed in 0.773 seconds
UseVector inner completed in 0.638 seconds
UseVector completed in 0.757 seconds
UseVectorPushBack inner completed in 6.732 seconds
UseVectorPush completed in 6.856 seconds
The whole thing completed in 8.387 seconds

编译器:

gcc version 6.2.0 20161019 (Debian 6.2.0-9)

CPU:

model name  : Intel(R) Core(TM) i7-3630QM CPU @ 2.40GHz

代码是:

#include <cstdlib>
#include <vector>

#include <iostream>
#include <string>

#include <boost/date_time/posix_time/ptime.hpp>
#include <boost/date_time/microsec_time_clock.hpp>

class TestTimer
{
    public:
        TestTimer(const std::string & name) : name(name),
            start(boost::date_time::microsec_clock<boost::posix_time::ptime>::local_time())
        {
        }

        ~TestTimer()
        {
            using namespace std;
            using namespace boost;

            posix_time::ptime now(date_time::microsec_clock<posix_time::ptime>::local_time());
            posix_time::time_duration d = now - start;

            cout << name << " completed in " << d.total_milliseconds() / 1000.0 <<
                " seconds" << endl;
        }

    private:
        std::string name;
        boost::posix_time::ptime start;
};

struct Pixel
{
    Pixel()
    {
    }

    Pixel(unsigned char r, unsigned char g, unsigned char b) : r(r), g(g), b(b)
    {
    }

    unsigned char r, g, b;
};

void UseVector(std::vector<std::vector<Pixel> >& results)
{
    TestTimer t("UseVector inner");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel>& pixels = results.at(i);
        pixels.resize(dimension * dimension);

        for(int i = 0; i < dimension * dimension; ++i)
        {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = 0;
        }
    }
}

void UseVectorPushBack(std::vector<std::vector<Pixel> >& results)
{
    TestTimer t("UseVectorPushBack inner");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        std::vector<Pixel>& pixels = results.at(i);
            pixels.reserve(dimension * dimension);

        for(int i = 0; i < dimension * dimension; ++i)
            pixels.push_back(Pixel(255, 0, 0));
    }
}

void UseArray(Pixel** results)
{
    TestTimer t("UseArray inner");

    for(int i = 0; i < 1000; ++i)
    {
        int dimension = 999;

        Pixel * pixels = (Pixel *)malloc(sizeof(Pixel) * dimension * dimension);

        results[i] = pixels;

        for(int i = 0 ; i < dimension * dimension; ++i)
        {
            pixels[i].r = 255;
            pixels[i].g = 0;
            pixels[i].b = 0;
        }

        // free(pixels);
    }
}

void UseArray()
{
    TestTimer t("UseArray");
    Pixel** array = (Pixel**)malloc(sizeof(Pixel*)* 1000);
    UseArray(array);
    for(int i=0;i<1000;++i)
        free(array[i]);
    free(array);
}

void UseVector()
{
    TestTimer t("UseVector");
    {
        std::vector<std::vector<Pixel> > vector(1000, std::vector<Pixel>());
        UseVector(vector);
    }
}

void UseVectorPushBack()
{
    TestTimer t("UseVectorPush");
    {
        std::vector<std::vector<Pixel> > vector(1000, std::vector<Pixel>());
        UseVectorPushBack(vector);
    }
}


int main()
{
    TestTimer t1("The whole thing");

    UseArray();
    UseVector();
    UseVectorPushBack();

    return 0;
}