我在上一门计算机系统课程,在某种程度上,我一直在为“二的补充”而挣扎。我想了解它,但我所读到的一切并没有让我明白它的含义。我读过维基百科的文章和其他各种文章,包括我的课本。
什么是2的补数,我们如何使用它,它如何在强制转换(从有符号到无符号,反之亦然)、逐位操作和位移位操作等操作中影响数字?
我在上一门计算机系统课程,在某种程度上,我一直在为“二的补充”而挣扎。我想了解它,但我所读到的一切并没有让我明白它的含义。我读过维基百科的文章和其他各种文章,包括我的课本。
什么是2的补数,我们如何使用它,它如何在强制转换(从有符号到无符号,反之亦然)、逐位操作和位移位操作等操作中影响数字?
当前回答
我在Reddit上读到jng的一篇精彩的解释,用里程表做类比。
It is a useful convention. The same circuits and logic operations that add / subtract positive numbers in binary still work on both positive and negative numbers if using the convention, that's why it's so useful and omnipresent. Imagine the odometer of a car, it rolls around at (say) 99999. If you increment 00000 you get 00001. If you decrement 00000, you get 99999 (due to the roll-around). If you add one back to 99999 it goes back to 00000. So it's useful to decide that 99999 represents -1. Likewise, it is very useful to decide that 99998 represents -2, and so on. You have to stop somewhere, and also by convention, the top half of the numbers are deemed to be negative (50000-99999), and the bottom half positive just stand for themselves (00000-49999). As a result, the top digit being 5-9 means the represented number is negative, and it being 0-4 means the represented is positive - exactly the same as the top bit representing sign in a two's complement binary number. Understanding this was hard for me too. Once I got it and went back to re-read the books articles and explanations (there was no internet back then), it turned out a lot of those describing it didn't really understand it. I did write a book teaching assembly language after that (which did sell quite well for 10 years).
其他回答
想象一下,你有有限数量的比特/比特/数字等等。将0定义为所有数字都为0,并自然向上计数:
00
01
02
..
最终你会溢出。
98
99
00
我们有两位数字,可以表示从0到100的所有数字。所有这些数字都是正数!假设我们也想表示负数?
我们真正拥有的是一个循环。2之前的数字是1。1之前的数字是0。0之前的数字是…99.
为了简单起见,我们设任何大于50的数都是负数。0 ~ 49代表0 ~ 49。“99”是-1,“98”是-2,…“50”是-50。
这个表示是十的补数。计算机通常使用2的补码,除了使用位而不是数字之外,它是一样的。
10的补数的好处在于加法运算可以正常进行。你不需要做任何特殊的加法和负数!
我喜欢lavinio的回答,但变换部分增加了一些复杂性。通常情况下,可以选择在保留符号位的情况下移动位,或者不保留符号位。这是将数字处理为有符号数字(-8到7表示小块,-128到127表示字节)或全范围无符号数字(0到15表示小块,0到255表示字节)之间的选择。
我想知道是否有比维基百科上的文章更好的解释。
你试图用2的补表示法解决的基本问题是存储负整数的问题。
首先,考虑一个存储在4位的无符号整数。您可以拥有以下内容
0000 = 0
0001 = 1
0010 = 2
...
1111 = 15
这些是无符号的,因为没有指示它们是负的还是正的。
符号大小和多余符号
要存储负数,您可以尝试一些方法。首先,您可以使用符号幅度表示法,它将第一个位指定为符号位来表示+/-,其余位表示幅度。还是用4位假设1代表- 0代表+那么你就有
0000 = +0
0001 = +1
0010 = +2
...
1000 = -0
1001 = -1
1111 = -7
所以,你看到问题了吗?我们有正0和负0。更大的问题是二进制数的加减法。使用符号幅度进行加减法的电路将非常复杂。
是什么
0010
1001 +
----
?
另一个系统是过量符号。你可以存储负数,你可以摆脱两个0的问题但加减法仍然很困难。
于是就有了二的补。现在您可以存储正整数和负整数,并相对轻松地执行算术。有许多方法可以将一个数转换为二的补数。这是一个。
将十进制转换为二的补数
将数字转换为二进制(暂时忽略符号) 例如,5是0101,-5是0101 如果这个数字是正数,那么你就完成了。 例5是二进制的0101,使用二的补符号。 如果数字是负的,那么 3.1求补(0和1的倒数) 例如,-5是0101,所以找到补语是1010 3.2补数1010 + 1 = 1011加1 因此,2的补数-5等于1011。
那么,如果你想用二进制写2 +(-3)呢?2 +(-3) = -1。 如果你用符号的大小来加这些数,你需要做什么?0010 + 1101 = ?
使用2的补码,想想会有多简单。
2 = 0010
-3 = 1101 +
-------------
-1 = 1111
将2的补数转换为十进制
将1111转换为十进制:
这个数从1开始,所以它是负的,所以我们找到1111的补数,也就是0000。 0000加上1,得到0001。 将0001转换为十进制,即1。 应用符号= -1。
哒哒!
Two的补码是一种存储整数的聪明方法,因此常见的数学问题很容易实现。
为了理解,你必须把数字想象成二进制。
它基本上是说,
对于0,用所有的0。 对于正整数,开始计数,最大值为2(位数-1)-1。 对于负整数,做完全相同的事情,但是切换0和1的角色并开始倒数(所以不是从0000开始,而是从1111开始——这是“补”部分)。
让我们尝试一个4位的迷你字节(我们称之为1/2个字节)。
0000 -零 0001 - 1 0010 - 2 0011 - 3 0100到0111,4点到7点
这是我们目前能找到的阳性结果。23-1 = 7。
负面影响:
1111 - 1 1110 - 2 1101 - 3 1100到1000 - - 4到- 8
注意,负数(1000 = -8)有一个额外的值,而正数没有。这是因为0000用于表示零。这可以看作是计算机的数轴。
区分正数和负数
这样一来,第一个位就扮演了“符号”位的角色,因为它可以用来区分非负的十进制值和负的十进制值。如果最高有效位是1,那么二进制就可以说是负的,如果最高有效位(最左边)是0,就可以说十进制值是非负的。
“符号量级”的负数只是将它们的正数对应的符号位颠倒了,但这种方法必须处理将1000(一个1后面跟着所有的0)解释为“负零”,这是令人困惑的。
“1的补”负数只是它们的正数的位补,这也导致了“负零”和1111(都是1)的混淆。
除非你的工作非常接近硬件,否则你可能不需要处理个位补或符号幅度整数表示。
2's complement is essentially a way of coming up with the additive inverse of a binary number. Ask yourself this: Given a number in binary form (present at a fixed length memory location), what bit pattern, when added to the original number (at the fixed length memory location), would make the result all zeros ? (at the same fixed length memory location). If we could come up with this bit pattern then that bit pattern would be the -ve representation (additive inverse) of the original number; as by definition adding a number to its additive inverse always results in zero. Example: take 5 which is 101 present inside a single 8 bit byte. Now the task is to come up with a bit pattern which when added to the given bit pattern (00000101) would result in all zeros at the memory location which is used to hold this 5 i.e. all 8 bits of the byte should be zero. To do that, start from the right most bit of 101 and for each individual bit, again ask the same question: What bit should I add to the current bit to make the result zero ? continue doing that taking in account the usual carry over. After we are done with the 3 right most places (the digits that define the original number without regard to the leading zeros) the last carry goes in the bit pattern of the additive inverse. Furthermore, since we are holding in the original number in a single 8 bit byte, all other leading bits in the additive inverse should also be 1's so that (and this is important) when the computer adds "the number" (represented using the 8 bit pattern) and its additive inverse using "that" storage type (a byte) the result in that byte would be all zeros.
1 1 1
----------
1 0 1
1 0 1 1 ---> additive inverse
---------
0 0 0