我在上一门计算机系统课程,在某种程度上,我一直在为“二的补充”而挣扎。我想了解它,但我所读到的一切并没有让我明白它的含义。我读过维基百科的文章和其他各种文章,包括我的课本。

什么是2的补数,我们如何使用它,它如何在强制转换(从有符号到无符号,反之亦然)、逐位操作和位移位操作等操作中影响数字?


当前回答

我在Reddit上读到jng的一篇精彩的解释,用里程表做类比。

It is a useful convention. The same circuits and logic operations that add / subtract positive numbers in binary still work on both positive and negative numbers if using the convention, that's why it's so useful and omnipresent. Imagine the odometer of a car, it rolls around at (say) 99999. If you increment 00000 you get 00001. If you decrement 00000, you get 99999 (due to the roll-around). If you add one back to 99999 it goes back to 00000. So it's useful to decide that 99999 represents -1. Likewise, it is very useful to decide that 99998 represents -2, and so on. You have to stop somewhere, and also by convention, the top half of the numbers are deemed to be negative (50000-99999), and the bottom half positive just stand for themselves (00000-49999). As a result, the top digit being 5-9 means the represented number is negative, and it being 0-4 means the represented is positive - exactly the same as the top bit representing sign in a two's complement binary number. Understanding this was hard for me too. Once I got it and went back to re-read the books articles and explanations (there was no internet back then), it turned out a lot of those describing it didn't really understand it. I did write a book teaching assembly language after that (which did sell quite well for 10 years).

其他回答

想象一下,你有有限数量的比特/比特/数字等等。将0定义为所有数字都为0,并自然向上计数:

00
01
02
..

最终你会溢出。

98
99
00

我们有两位数字,可以表示从0到100的所有数字。所有这些数字都是正数!假设我们也想表示负数?

我们真正拥有的是一个循环。2之前的数字是1。1之前的数字是0。0之前的数字是…99.

为了简单起见,我们设任何大于50的数都是负数。0 ~ 49代表0 ~ 49。“99”是-1,“98”是-2,…“50”是-50。

这个表示是十的补数。计算机通常使用2的补码,除了使用位而不是数字之外,它是一样的。

10的补数的好处在于加法运算可以正常进行。你不需要做任何特殊的加法和负数!

2的补码对于查找二进制值非常有用,但是我想到了一个更简洁的方法来解决这样的问题(从未见过其他人发布它):

以二进制为例:1101(假设空格“1”是符号)等于-3。

使用2的补码,我们可以这样做…翻1101到0010…加上0001 + 0010 ===>得到0011。0011的正二进制= 3。因此1101 = -3!

我意识到:

而不是所有的翻转和加法,你可以只做一个基本的方法来解决正二进制(假设0101)是(23 * 0)+(22 * 1)+(21 * 0)+(20 * 1)= 5。

用否定句做同样的概念!(稍微扭曲一下)

以1101为例:

对于第一个数字,用-(23 * 1)= -8代替23 * 1 = 8。

然后像往常一样,做-8 + (22 * 1)+ (21 * 0)+ (20 * 1)= -3

问题是“什么是“2的补码”?”

对于那些想要从理论上理解它的人(以及我试图补充其他更实际的答案),简单的答案是:2的补码是对偶系统中不需要额外字符(如+和-)的负整数的表示。

Two的补语主要用于以下原因:

避免0的多个表示形式 避免在溢出的情况下跟踪进位(如补位)。 进行简单的加法和减法运算变得很容易。

2对给定数的补数是1与1的补数相加得到的数。

假设我们有一个二进制数:10111001101

它的1的补位是:01000110010

它的2的补数是:01000110011