现在,每次运行脚本时,我都会导入一个相当大的CSV作为数据框架。是否有一个好的解决方案来保持数据帧在运行之间不断可用,这样我就不必花费所有的时间等待脚本运行?


当前回答

如前所述,有不同的选项和文件格式(HDF5, JSON, CSV, parquet, SQL)来存储数据帧。然而,pickle不是一级公民(取决于你的设置),因为:

泡菜是一个潜在的安全隐患。形成pickle的Python文档:

警告pickle模块不安全 恶意构造的数据。对象接收的数据永远不能解pickle 不受信任或未经身份验证的源。

泡菜很慢。找到这里和这里的基准。

根据您的设置/使用情况,这两个限制都不适用,但我不建议将pickle作为pandas数据帧的默认持久性。

其他回答

最简单的方法是使用to_pickle来pickle它:

df.to_pickle(file_name)  # where to save it, usually as a .pkl

然后你可以使用以下命令将其加载回来:

df = pd.read_pickle(file_name)

注意:在0.11.1之前,save和load是唯一的方法(现在它们已被弃用,分别支持to_pickle和read_pickle)。


另一个流行的选择是使用HDF5 (pytables),它为大型数据集提供了非常快的访问时间:

import pandas as pd
store = pd.HDFStore('store.h5')

store['df'] = df  # save it
store['df']  # load it

更高级的策略在烹饪书中讨论。


从0.13开始,也有msgpack,它可能在互操作性方面更好,作为JSON的更快替代品,或者如果你有python对象/文本较多的数据(参见这个问题)。

如果我理解正确的话,你已经在使用pandas.read_csv(),但想要加快开发过程,这样你就不必每次编辑脚本时都加载文件,对吗?我有一些建议:

you could load in only part of the CSV file using pandas.read_csv(..., nrows=1000) to only load the top bit of the table, while you're doing the development use ipython for an interactive session, such that you keep the pandas table in memory as you edit and reload your script. convert the csv to an HDF5 table updated use DataFrame.to_feather() and pd.read_feather() to store data in the R-compatible feather binary format that is super fast (in my hands, slightly faster than pandas.to_pickle() on numeric data and much faster on string data).

您可能还会对stackoverflow上的答案感兴趣。

Pandas DataFrame有to_pickle函数,这对于保存DataFrame非常有用:

import pandas as pd

a = pd.DataFrame({'A':[0,1,0,1,0],'B':[True, True, False, False, False]})
print a
#    A      B
# 0  0   True
# 1  1   True
# 2  0  False
# 3  1  False
# 4  0  False

a.to_pickle('my_file.pkl')

b = pd.read_pickle('my_file.pkl')
print b
#    A      B
# 0  0   True
# 1  1   True
# 2  0  False
# 3  1  False
# 4  0  False

https://docs.python.org/3/library/pickle.html

pickle协议格式如下:

协议版本0是原始的“人类可读”协议,并向后兼容Python的早期版本。

协议版本1是一种旧的二进制格式,它也与早期版本的Python兼容。

协议版本2是在Python 2.3中引入的。它提供了更有效的新样式类的pickle。有关协议2带来的改进,请参阅PEP 307。

协议版本3是在Python 3.0中添加的。它显式支持bytes对象,不能被Python 2.x解封。这是默认协议,也是在需要与其他Python 3版本兼容时的推荐协议。

协议版本4是在Python 3.4中添加的。它增加了对非常大的对象、pickle更多类型的对象以及一些数据格式优化的支持。有关协议4带来的改进的信息,请参阅PEP 3154。

泡菜很好!

import pandas as pd
df.to_pickle('123.pkl')    #to save the dataframe, df to 123.pkl
df1 = pd.read_pickle('123.pkl') #to load 123.pkl back to the dataframe df