现在,每次运行脚本时,我都会导入一个相当大的CSV作为数据框架。是否有一个好的解决方案来保持数据帧在运行之间不断可用,这样我就不必花费所有的时间等待脚本运行?
当前回答
Numpy文件格式对于数字数据来说非常快
我更喜欢使用numpy文件,因为它们快速且易于使用。 下面是一个简单的基准测试,用于保存和加载一个包含100万个点的1列数据框架。
import numpy as np
import pandas as pd
num_dict = {'voltage': np.random.rand(1000000)}
num_df = pd.DataFrame(num_dict)
使用ipython的%%timeit魔法函数
%%timeit
with open('num.npy', 'wb') as np_file:
np.save(np_file, num_df)
输出为
100 loops, best of 3: 5.97 ms per loop
将数据加载回数据框架
%%timeit
with open('num.npy', 'rb') as np_file:
data = np.load(np_file)
data_df = pd.DataFrame(data)
输出为
100 loops, best of 3: 5.12 ms per loop
不坏!
CONS
如果您使用python 2保存numpy文件,然后尝试使用python 3打开,则会出现问题(反之亦然)。
其他回答
如前所述,有不同的选项和文件格式(HDF5, JSON, CSV, parquet, SQL)来存储数据帧。然而,pickle不是一级公民(取决于你的设置),因为:
泡菜是一个潜在的安全隐患。形成pickle的Python文档:
警告pickle模块不安全 恶意构造的数据。对象接收的数据永远不能解pickle 不受信任或未经身份验证的源。
泡菜很慢。找到这里和这里的基准。
根据您的设置/使用情况,这两个限制都不适用,但我不建议将pickle作为pandas数据帧的默认持久性。
Pandas DataFrame有to_pickle函数,这对于保存DataFrame非常有用:
import pandas as pd
a = pd.DataFrame({'A':[0,1,0,1,0],'B':[True, True, False, False, False]})
print a
# A B
# 0 0 True
# 1 1 True
# 2 0 False
# 3 1 False
# 4 0 False
a.to_pickle('my_file.pkl')
b = pd.read_pickle('my_file.pkl')
print b
# A B
# 0 0 True
# 1 1 True
# 2 0 False
# 3 1 False
# 4 0 False
Pyarrow跨版本兼容性
总的来说,pyarrow/feather(来自pandas/msgpack的弃用警告)。然而,我有一个挑战与pyarrow的瞬态在规范中的数据序列化pyarrow 0.15.1不能反序列化与0.16.0 ARROW-7961。我使用序列化使用redis,所以必须使用二进制编码。
我重新测试了各种选择(使用jupyter笔记本电脑)
import sys, pickle, zlib, warnings, io
class foocls:
def pyarrow(out): return pa.serialize(out).to_buffer().to_pybytes()
def msgpack(out): return out.to_msgpack()
def pickle(out): return pickle.dumps(out)
def feather(out): return out.to_feather(io.BytesIO())
def parquet(out): return out.to_parquet(io.BytesIO())
warnings.filterwarnings("ignore")
for c in foocls.__dict__.values():
sbreak = True
try:
c(out)
print(c.__name__, "before serialization", sys.getsizeof(out))
print(c.__name__, sys.getsizeof(c(out)))
%timeit -n 50 c(out)
print(c.__name__, "zlib", sys.getsizeof(zlib.compress(c(out))))
%timeit -n 50 zlib.compress(c(out))
except TypeError as e:
if "not callable" in str(e): sbreak = False
else: raise
except (ValueError) as e: print(c.__name__, "ERROR", e)
finally:
if sbreak: print("=+=" * 30)
warnings.filterwarnings("default")
对我的数据帧(在出jupyter变量)具有以下结果
pyarrow before serialization 533366
pyarrow 120805
1.03 ms ± 43.9 µs per loop (mean ± std. dev. of 7 runs, 50 loops each)
pyarrow zlib 20517
2.78 ms ± 81.8 µs per loop (mean ± std. dev. of 7 runs, 50 loops each)
=+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+=
msgpack before serialization 533366
msgpack 109039
1.74 ms ± 72.8 µs per loop (mean ± std. dev. of 7 runs, 50 loops each)
msgpack zlib 16639
3.05 ms ± 71.7 µs per loop (mean ± std. dev. of 7 runs, 50 loops each)
=+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+=
pickle before serialization 533366
pickle 142121
733 µs ± 38.3 µs per loop (mean ± std. dev. of 7 runs, 50 loops each)
pickle zlib 29477
3.81 ms ± 60.4 µs per loop (mean ± std. dev. of 7 runs, 50 loops each)
=+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+=
feather ERROR feather does not support serializing a non-default index for the index; you can .reset_index() to make the index into column(s)
=+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+=
parquet ERROR Nested column branch had multiple children: struct<x: double, y: double>
=+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+==+=
羽毛和拼花不适合我的数据框架。我将继续使用pyarrow。但是我会补充腌黄瓜(没有压缩)。写入缓存时,存储pyarrow和pickle序列化表单。如果pyarrow反序列化失败,则从缓存读取回退到pickle时。
这里有很多很棒和充分的答案,但我想发布一个我在Kaggle上使用的测试,这个测试用不同的pandas兼容格式保存和读取大df:
https://www.kaggle.com/pedrocouto39/fast-reading-w-pickle-feather-parquet-jay
我不是作者,也不是作者的朋友,然而,当我读到这个问题时,我觉得值得一提。
CSV: 1分42秒泡菜:4.45秒羽毛:4.35秒拼花:8.31秒杰伦:8.12毫秒 或者0.0812秒(超快的!)
最简单的方法是使用to_pickle来pickle它:
df.to_pickle(file_name) # where to save it, usually as a .pkl
然后你可以使用以下命令将其加载回来:
df = pd.read_pickle(file_name)
注意:在0.11.1之前,save和load是唯一的方法(现在它们已被弃用,分别支持to_pickle和read_pickle)。
另一个流行的选择是使用HDF5 (pytables),它为大型数据集提供了非常快的访问时间:
import pandas as pd
store = pd.HDFStore('store.h5')
store['df'] = df # save it
store['df'] # load it
更高级的策略在烹饪书中讨论。
从0.13开始,也有msgpack,它可能在互操作性方面更好,作为JSON的更快替代品,或者如果你有python对象/文本较多的数据(参见这个问题)。
推荐文章
- 如何删除Python中的前导空白?
- python中的assertEquals和assertEqual
- 如何保持Python打印不添加换行符或空格?
- 为什么Python的无穷散列中有π的数字?
- Python 3.7数据类中的类继承
- 如何在PyTorch中初始化权重?
- 计数唯一的值在一列熊猫数据框架像在Qlik?
- 使用Pandas将列转换为行
- 从matplotlib中的颜色映射中获取单个颜色
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?