我有一个列表,我想通过项目的属性进行筛选。
以下哪个是首选(可读性,性能,其他原因)?
xs = [x for x in xs if x.attribute == value]
xs = filter(lambda x: x.attribute == value, xs)
我有一个列表,我想通过项目的属性进行筛选。
以下哪个是首选(可读性,性能,其他原因)?
xs = [x for x in xs if x.attribute == value]
xs = filter(lambda x: x.attribute == value, xs)
当前回答
除了公认的答案之外,还有一种极端情况,即您应该使用过滤器而不是列表推导式。如果列表是不可哈希的,则不能使用列表推导式直接处理它。一个真实的例子是使用pyodbc从数据库读取结果。游标的fetchAll()结果是一个不可哈希的列表。在这种情况下,要直接对返回的结果进行操作,应该使用filter:
cursor.execute("SELECT * FROM TABLE1;")
data_from_db = cursor.fetchall()
processed_data = filter(lambda s: 'abc' in s.field1 or s.StartTime >= start_date_time, data_from_db)
如果你在这里使用列表理解,你会得到错误:
TypeError:不可哈希类型:list
其他回答
除了公认的答案之外,还有一种极端情况,即您应该使用过滤器而不是列表推导式。如果列表是不可哈希的,则不能使用列表推导式直接处理它。一个真实的例子是使用pyodbc从数据库读取结果。游标的fetchAll()结果是一个不可哈希的列表。在这种情况下,要直接对返回的结果进行操作,应该使用filter:
cursor.execute("SELECT * FROM TABLE1;")
data_from_db = cursor.fetchall()
processed_data = filter(lambda s: 'abc' in s.field1 or s.StartTime >= start_date_time, data_from_db)
如果你在这里使用列表理解,你会得到错误:
TypeError:不可哈希类型:list
一般过滤器稍快,如果使用内置函数。
在您的情况下,我希望列表理解稍微快一些
奇怪的是,在Python 3上,我看到过滤器执行得比列表推导更快。
我一直认为列表推导式的性能会更好。 喜欢的东西: [name为brand_names_db中的name,如果name不是None] 生成的字节码稍好一些。
>>> def f1(seq):
... return list(filter(None, seq))
>>> def f2(seq):
... return [i for i in seq if i is not None]
>>> disassemble(f1.__code__)
2 0 LOAD_GLOBAL 0 (list)
2 LOAD_GLOBAL 1 (filter)
4 LOAD_CONST 0 (None)
6 LOAD_FAST 0 (seq)
8 CALL_FUNCTION 2
10 CALL_FUNCTION 1
12 RETURN_VALUE
>>> disassemble(f2.__code__)
2 0 LOAD_CONST 1 (<code object <listcomp> at 0x10cfcaa50, file "<stdin>", line 2>)
2 LOAD_CONST 2 ('f2.<locals>.<listcomp>')
4 MAKE_FUNCTION 0
6 LOAD_FAST 0 (seq)
8 GET_ITER
10 CALL_FUNCTION 1
12 RETURN_VALUE
但它们实际上更慢:
>>> timeit(stmt="f1(range(1000))", setup="from __main__ import f1,f2")
21.177661532000116
>>> timeit(stmt="f2(range(1000))", setup="from __main__ import f1,f2")
42.233950221000214
我觉得第二种方法更容易读懂。它确切地告诉你目的是什么:过滤列表。 注意:不要使用list作为变量名
过滤器就是这样。它过滤掉列表中的元素。你可以看到定义中提到了同样的内容(在我之前提到的官方文档链接中)。然而,列表理解是在对前一个列表上的内容进行操作后产生一个新的列表。(过滤器和列表推导式都创建新列表,而不执行替换旧列表的操作。这里的新列表类似于具有全新数据类型的列表。比如将整数转换为字符串,等等)
在您的示例中,根据定义,使用过滤器比使用列表理解更好。但是,如果您希望,例如列表元素中的other_attribute,在您的示例中是作为一个新列表检索,那么您可以使用列表推导式。
return [item.other_attribute for item in my_list if item.attribute==value]
这就是我对筛选器和列表理解的记忆。删除列表中的一些东西,并保持其他元素完整,使用过滤器。在元素上使用一些自己的逻辑,并创建一个适合某些目的的稀释列表,使用列表理解。