我有一个列表,我想通过项目的属性进行筛选。
以下哪个是首选(可读性,性能,其他原因)?
xs = [x for x in xs if x.attribute == value]
xs = filter(lambda x: x.attribute == value, xs)
我有一个列表,我想通过项目的属性进行筛选。
以下哪个是首选(可读性,性能,其他原因)?
xs = [x for x in xs if x.attribute == value]
xs = filter(lambda x: x.attribute == value, xs)
当前回答
尽管过滤器可能是“更快的方式”,但“Python方式”是不关心这些事情,除非性能绝对关键(在这种情况下,您不会使用Python!)。
其他回答
奇怪的是,不同的人的美相差如此之大。我发现列表理解比filter+lambda清晰得多,但使用您认为更容易的。
有两件事可能会减慢你使用滤镜的速度。
首先是函数调用开销:一旦使用Python函数(无论是由def还是lambda创建的),过滤器很可能会比列表理解慢。几乎可以肯定,这并不重要,在对代码进行计时并发现它是一个瓶颈之前,您不应该过多地考虑性能,但区别是存在的。
可能应用的另一个开销是lambda被强制访问一个有作用域的变量(值)。这比在python2中访问局部变量要慢。X,列表推导式只访问局部变量。如果你使用的是Python 3。X,列表综合在一个单独的函数中运行,因此它也将通过闭包访问值,这种差异将不适用。
另一个可以考虑的选项是使用生成器而不是列表推导式:
def filterbyvalue(seq, value):
for el in seq:
if el.attribute==value: yield el
然后在你的主代码中(这是可读性真正重要的地方),你用一个有意义的函数名替换了列表理解和过滤器。
一个重要的区别是,列表推导式将返回一个列表,而过滤器返回一个过滤器,你不能像操作列表一样操作它(即:在它上调用len,它不能与过滤器的返回一起工作)。
我自己的自学也让我遇到了类似的问题。
也就是说,如果有一种方法可以从过滤器获得结果列表,有点像在。net中执行lst时所做的那样。Where(i => i.something()). tolist(),我很想知道它。
编辑:这是Python 3的情况,而不是Python 2(见评论中的讨论)。
由于任何速度差异都必然是微乎其微的,因此使用过滤器还是列表推导式都取决于个人喜好。一般来说,我倾向于使用推导式(这似乎与这里的大多数其他答案一致),但有一种情况下,我更喜欢过滤器。
一个非常常见的用例是根据谓词P(X)提取某个可迭代对象X的值:
[x for x in X if P(x)]
但有时你想先对值应用一些函数:
[f(x) for x in X if P(f(x))]
作为一个具体的例子,请考虑
primes_cubed = [x*x*x for x in range(1000) if prime(x)]
我认为这看起来比使用滤镜要好一点。但是现在想想
prime_cubes = [x*x*x for x in range(1000) if prime(x*x*x)]
在本例中,我们希望根据后计算值进行过滤。除了计算立方体两次的问题(想象一个更昂贵的计算),还有编写表达式两次的问题,这违反了DRY美学。在这种情况下,我会使用
prime_cubes = filter(prime, [x*x*x for x in range(1000)])
过滤器就是这样。它过滤掉列表中的元素。你可以看到定义中提到了同样的内容(在我之前提到的官方文档链接中)。然而,列表理解是在对前一个列表上的内容进行操作后产生一个新的列表。(过滤器和列表推导式都创建新列表,而不执行替换旧列表的操作。这里的新列表类似于具有全新数据类型的列表。比如将整数转换为字符串,等等)
在您的示例中,根据定义,使用过滤器比使用列表理解更好。但是,如果您希望,例如列表元素中的other_attribute,在您的示例中是作为一个新列表检索,那么您可以使用列表推导式。
return [item.other_attribute for item in my_list if item.attribute==value]
这就是我对筛选器和列表理解的记忆。删除列表中的一些东西,并保持其他元素完整,使用过滤器。在元素上使用一些自己的逻辑,并创建一个适合某些目的的稀释列表,使用列表理解。
就性能而言,这要视情况而定。
filter不返回一个列表而是一个迭代器,如果你需要列表“立即”过滤和列表转换,它比非常大的列表(>1M)的列表理解要慢40%左右。到100K的元素几乎没有区别,从600K开始就开始有区别了。
如果不转换为列表,筛选实际上是即时的。
更多信息请访问:https://blog.finxter.com/python-lists-filter-vs-list-comprehension-which-is-faster/