我有一个列表,我想通过项目的属性进行筛选。

以下哪个是首选(可读性,性能,其他原因)?

xs = [x for x in xs if x.attribute == value]
xs = filter(lambda x: x.attribute == value, xs)

当前回答

一个重要的区别是,列表推导式将返回一个列表,而过滤器返回一个过滤器,你不能像操作列表一样操作它(即:在它上调用len,它不能与过滤器的返回一起工作)。

我自己的自学也让我遇到了类似的问题。

也就是说,如果有一种方法可以从过滤器获得结果列表,有点像在。net中执行lst时所做的那样。Where(i => i.something()). tolist(),我很想知道它。

编辑:这是Python 3的情况,而不是Python 2(见评论中的讨论)。

其他回答

当我需要在列表理解之后过滤一些东西时,我使用了一小段。只是过滤器、lambda和列表的组合(或者称为猫的忠诚度和狗的清洁度)。

在这种情况下,我正在读取一个文件,剥离空行,注释掉行,以及在一行的注释之后的任何内容:

# Throw out blank lines and comments
with open('file.txt', 'r') as lines:        
    # From the inside out:
    #    [s.partition('#')[0].strip() for s in lines]... Throws out comments
    #   filter(lambda x: x!= '', [s.part... Filters out blank lines
    #  y for y in filter... Converts filter object to list
    file_contents = [y for y in filter(lambda x: x != '', [s.partition('#')[0].strip() for s in lines])]

就性能而言,这要视情况而定。

filter不返回一个列表而是一个迭代器,如果你需要列表“立即”过滤和列表转换,它比非常大的列表(>1M)的列表理解要慢40%左右。到100K的元素几乎没有区别,从600K开始就开始有区别了。

如果不转换为列表,筛选实际上是即时的。

更多信息请访问:https://blog.finxter.com/python-lists-filter-vs-list-comprehension-which-is-faster/

我会得出结论:使用列表理解而不是过滤器,因为它

更具可读性 更多的神谕的 更快(对于Python 3.11,参见附带的基准测试,也参见)

请记住,filter返回一个迭代器,而不是一个列表。

python3 -m timeit '[x for x in range(10000000) if x % 2 == 0]'            

1个循环,5个最佳:每循环270毫秒

python3 -m timeit 'list(filter(lambda x: x % 2 == 0, range(10000000)))'

1个循环,最好的5:432毫秒每循环

我想我只是在python 3中添加,filter()实际上是一个迭代器对象,所以你必须将你的filter方法调用传递给list(),以构建过滤后的列表。所以在python 2中:

lst_a = range(25) #arbitrary list
lst_b = [num for num in lst_a if num % 2 == 0]
lst_c = filter(lambda num: num % 2 == 0, lst_a)

列表b和c具有相同的值,并且在filter()等效的时间内完成[x for x in y if z]。然而,在3中,相同的代码将使列表c包含一个筛选器对象,而不是一个筛选过的列表。要在3中产生相同的值:

lst_a = range(25) #arbitrary list
lst_b = [num for num in lst_a if num % 2 == 0]
lst_c = list(filter(lambda num: num %2 == 0, lst_a))

问题是list()接受一个可迭代对象作为参数,并从该参数创建一个新列表。结果是,在python 3中以这种方式使用filter所花费的时间是[x for x in y if z]方法的两倍,因为你必须遍历filter()的输出以及原始列表。

奇怪的是,在Python 3上,我看到过滤器执行得比列表推导更快。

我一直认为列表推导式的性能会更好。 喜欢的东西: [name为brand_names_db中的name,如果name不是None] 生成的字节码稍好一些。

>>> def f1(seq):
...     return list(filter(None, seq))
>>> def f2(seq):
...     return [i for i in seq if i is not None]
>>> disassemble(f1.__code__)
2         0 LOAD_GLOBAL              0 (list)
          2 LOAD_GLOBAL              1 (filter)
          4 LOAD_CONST               0 (None)
          6 LOAD_FAST                0 (seq)
          8 CALL_FUNCTION            2
         10 CALL_FUNCTION            1
         12 RETURN_VALUE
>>> disassemble(f2.__code__)
2           0 LOAD_CONST               1 (<code object <listcomp> at 0x10cfcaa50, file "<stdin>", line 2>)
          2 LOAD_CONST               2 ('f2.<locals>.<listcomp>')
          4 MAKE_FUNCTION            0
          6 LOAD_FAST                0 (seq)
          8 GET_ITER
         10 CALL_FUNCTION            1
         12 RETURN_VALUE

但它们实际上更慢:

   >>> timeit(stmt="f1(range(1000))", setup="from __main__ import f1,f2")
   21.177661532000116
   >>> timeit(stmt="f2(range(1000))", setup="from __main__ import f1,f2")
   42.233950221000214