我有一个列表,我想通过项目的属性进行筛选。

以下哪个是首选(可读性,性能,其他原因)?

xs = [x for x in xs if x.attribute == value]
xs = filter(lambda x: x.attribute == value, xs)

当前回答

总结其他答案

通过查看答案,我们已经看到了大量的反反复复,是否列表理解或过滤可能更快,或者关心这样的问题是否重要或python。最后,答案和大多数时候一样:视情况而定。

我只是在优化代码时偶然发现了这个问题,这个问题(尽管与in表达式结合在一起,而不是==)非常相关- filter + lambda表达式占用了我三分之一的计算时间(几分钟)。

我的情况

在我的例子中,列表理解要快得多(速度的两倍)。但我怀疑,根据过滤器表达式以及使用的Python解释器,这有很大的不同。

自己测试一下

下面是一个简单的代码片段,应该很容易适应。如果你对它进行剖析(大多数ide都可以很容易地做到这一点),你就可以很容易地为你的特定情况决定哪个是更好的选择:

whitelist = set(range(0, 100000000, 27))

input_list = list(range(0, 100000000))

proximal_list = list(filter(
        lambda x: x in whitelist,
        input_list
    ))

proximal_list2 = [x for x in input_list if x in whitelist]

print(len(proximal_list))
print(len(proximal_list2))

如果您没有一个IDE可以让您轻松地进行概要分析,那么可以试试这个(从我的代码库中提取,因此稍微复杂一点)。这段代码片段将为您创建一个配置文件,您可以轻松地使用例如snakeviz可视化:

import cProfile
from time import time


class BlockProfile:
    def __init__(self, profile_path):
        self.profile_path = profile_path
        self.profiler = None
        self.start_time = None

    def __enter__(self):
        self.profiler = cProfile.Profile()
        self.start_time = time()
        self.profiler.enable()

    def __exit__(self, *args):
        self.profiler.disable()
        exec_time = int((time() - self.start_time) * 1000)
        self.profiler.dump_stats(self.profile_path)


whitelist = set(range(0, 100000000, 27))
input_list = list(range(0, 100000000))

with BlockProfile("/path/to/create/profile/in/profile.pstat"):
    proximal_list = list(filter(
            lambda x: x in whitelist,
            input_list
        ))

    proximal_list2 = [x for x in input_list if x in whitelist]

print(len(proximal_list))
print(len(proximal_list2))

其他回答

这在Python中有点像宗教问题。尽管Guido考虑从Python 3中删除map、filter和reduce,但还是有足够的反对意见,最终只有reduce从内置迁移到functools.reduce。

就我个人而言,我发现列表推导式更容易阅读。从表达式[i for i in list if i.attribute == value]中发生的事情更加明确,因为所有的行为都在表面上,而不是在过滤器函数内部。

我不会太担心这两种方法之间的性能差异,因为它是微不足道的。我只会优化它,如果它被证明是你的应用程序的瓶颈,这是不太可能的。

此外,由于BDFL希望从语言中删除过滤器,那么肯定会自动使列表理解更python化;-)

一般过滤器稍快,如果使用内置函数。

在您的情况下,我希望列表理解稍微快一些

你的问题既简单又有趣。它只是显示了python作为一种编程语言是多么的灵活。人们可以使用任何逻辑,根据自己的才能和理解来编写程序。只要我们得到答案就好。

在您的情况下,这只是一个简单的过滤方法,可以由两者完成,但我更喜欢第一个my_list = [x for x in my_list if x.attribute == value],因为它看起来简单,不需要任何特殊的语法。任何人都可以理解这个命令,并在需要时进行更改。 (虽然第二种方法也很简单,但对于初级程序员来说,它仍然比第一种方法更复杂)

总结其他答案

通过查看答案,我们已经看到了大量的反反复复,是否列表理解或过滤可能更快,或者关心这样的问题是否重要或python。最后,答案和大多数时候一样:视情况而定。

我只是在优化代码时偶然发现了这个问题,这个问题(尽管与in表达式结合在一起,而不是==)非常相关- filter + lambda表达式占用了我三分之一的计算时间(几分钟)。

我的情况

在我的例子中,列表理解要快得多(速度的两倍)。但我怀疑,根据过滤器表达式以及使用的Python解释器,这有很大的不同。

自己测试一下

下面是一个简单的代码片段,应该很容易适应。如果你对它进行剖析(大多数ide都可以很容易地做到这一点),你就可以很容易地为你的特定情况决定哪个是更好的选择:

whitelist = set(range(0, 100000000, 27))

input_list = list(range(0, 100000000))

proximal_list = list(filter(
        lambda x: x in whitelist,
        input_list
    ))

proximal_list2 = [x for x in input_list if x in whitelist]

print(len(proximal_list))
print(len(proximal_list2))

如果您没有一个IDE可以让您轻松地进行概要分析,那么可以试试这个(从我的代码库中提取,因此稍微复杂一点)。这段代码片段将为您创建一个配置文件,您可以轻松地使用例如snakeviz可视化:

import cProfile
from time import time


class BlockProfile:
    def __init__(self, profile_path):
        self.profile_path = profile_path
        self.profiler = None
        self.start_time = None

    def __enter__(self):
        self.profiler = cProfile.Profile()
        self.start_time = time()
        self.profiler.enable()

    def __exit__(self, *args):
        self.profiler.disable()
        exec_time = int((time() - self.start_time) * 1000)
        self.profiler.dump_stats(self.profile_path)


whitelist = set(range(0, 100000000, 27))
input_list = list(range(0, 100000000))

with BlockProfile("/path/to/create/profile/in/profile.pstat"):
    proximal_list = list(filter(
            lambda x: x in whitelist,
            input_list
        ))

    proximal_list2 = [x for x in input_list if x in whitelist]

print(len(proximal_list))
print(len(proximal_list2))

奇怪的是,不同的人的美相差如此之大。我发现列表理解比filter+lambda清晰得多,但使用您认为更容易的。

有两件事可能会减慢你使用滤镜的速度。

首先是函数调用开销:一旦使用Python函数(无论是由def还是lambda创建的),过滤器很可能会比列表理解慢。几乎可以肯定,这并不重要,在对代码进行计时并发现它是一个瓶颈之前,您不应该过多地考虑性能,但区别是存在的。

可能应用的另一个开销是lambda被强制访问一个有作用域的变量(值)。这比在python2中访问局部变量要慢。X,列表推导式只访问局部变量。如果你使用的是Python 3。X,列表综合在一个单独的函数中运行,因此它也将通过闭包访问值,这种差异将不适用。

另一个可以考虑的选项是使用生成器而不是列表推导式:

def filterbyvalue(seq, value):
   for el in seq:
       if el.attribute==value: yield el

然后在你的主代码中(这是可读性真正重要的地方),你用一个有意义的函数名替换了列表理解和过滤器。