我有一个列表,我想通过项目的属性进行筛选。
以下哪个是首选(可读性,性能,其他原因)?
xs = [x for x in xs if x.attribute == value]
xs = filter(lambda x: x.attribute == value, xs)
我有一个列表,我想通过项目的属性进行筛选。
以下哪个是首选(可读性,性能,其他原因)?
xs = [x for x in xs if x.attribute == value]
xs = filter(lambda x: x.attribute == value, xs)
当前回答
我会得出结论:使用列表理解而不是过滤器,因为它
更具可读性 更多的神谕的 更快(对于Python 3.11,参见附带的基准测试,也参见)
请记住,filter返回一个迭代器,而不是一个列表。
python3 -m timeit '[x for x in range(10000000) if x % 2 == 0]'
1个循环,5个最佳:每循环270毫秒
python3 -m timeit 'list(filter(lambda x: x % 2 == 0, range(10000000)))'
1个循环,最好的5:432毫秒每循环
其他回答
我觉得第二种方法更容易读懂。它确切地告诉你目的是什么:过滤列表。 注意:不要使用list作为变量名
一般过滤器稍快,如果使用内置函数。
在您的情况下,我希望列表理解稍微快一些
除了公认的答案之外,还有一种极端情况,即您应该使用过滤器而不是列表推导式。如果列表是不可哈希的,则不能使用列表推导式直接处理它。一个真实的例子是使用pyodbc从数据库读取结果。游标的fetchAll()结果是一个不可哈希的列表。在这种情况下,要直接对返回的结果进行操作,应该使用filter:
cursor.execute("SELECT * FROM TABLE1;")
data_from_db = cursor.fetchall()
processed_data = filter(lambda s: 'abc' in s.field1 or s.StartTime >= start_date_time, data_from_db)
如果你在这里使用列表理解,你会得到错误:
TypeError:不可哈希类型:list
我想我只是在python 3中添加,filter()实际上是一个迭代器对象,所以你必须将你的filter方法调用传递给list(),以构建过滤后的列表。所以在python 2中:
lst_a = range(25) #arbitrary list
lst_b = [num for num in lst_a if num % 2 == 0]
lst_c = filter(lambda num: num % 2 == 0, lst_a)
列表b和c具有相同的值,并且在filter()等效的时间内完成[x for x in y if z]。然而,在3中,相同的代码将使列表c包含一个筛选器对象,而不是一个筛选过的列表。要在3中产生相同的值:
lst_a = range(25) #arbitrary list
lst_b = [num for num in lst_a if num % 2 == 0]
lst_c = list(filter(lambda num: num %2 == 0, lst_a))
问题是list()接受一个可迭代对象作为参数,并从该参数创建一个新列表。结果是,在python 3中以这种方式使用filter所花费的时间是[x for x in y if z]方法的两倍,因为你必须遍历filter()的输出以及原始列表。
奇怪的是,在Python 3上,我看到过滤器执行得比列表推导更快。
我一直认为列表推导式的性能会更好。 喜欢的东西: [name为brand_names_db中的name,如果name不是None] 生成的字节码稍好一些。
>>> def f1(seq):
... return list(filter(None, seq))
>>> def f2(seq):
... return [i for i in seq if i is not None]
>>> disassemble(f1.__code__)
2 0 LOAD_GLOBAL 0 (list)
2 LOAD_GLOBAL 1 (filter)
4 LOAD_CONST 0 (None)
6 LOAD_FAST 0 (seq)
8 CALL_FUNCTION 2
10 CALL_FUNCTION 1
12 RETURN_VALUE
>>> disassemble(f2.__code__)
2 0 LOAD_CONST 1 (<code object <listcomp> at 0x10cfcaa50, file "<stdin>", line 2>)
2 LOAD_CONST 2 ('f2.<locals>.<listcomp>')
4 MAKE_FUNCTION 0
6 LOAD_FAST 0 (seq)
8 GET_ITER
10 CALL_FUNCTION 1
12 RETURN_VALUE
但它们实际上更慢:
>>> timeit(stmt="f1(range(1000))", setup="from __main__ import f1,f2")
21.177661532000116
>>> timeit(stmt="f2(range(1000))", setup="from __main__ import f1,f2")
42.233950221000214