我有一个列表,我想通过项目的属性进行筛选。
以下哪个是首选(可读性,性能,其他原因)?
xs = [x for x in xs if x.attribute == value]
xs = filter(lambda x: x.attribute == value, xs)
我有一个列表,我想通过项目的属性进行筛选。
以下哪个是首选(可读性,性能,其他原因)?
xs = [x for x in xs if x.attribute == value]
xs = filter(lambda x: x.attribute == value, xs)
当前回答
我会得出结论:使用列表理解而不是过滤器,因为它
更具可读性 更多的神谕的 更快(对于Python 3.11,参见附带的基准测试,也参见)
请记住,filter返回一个迭代器,而不是一个列表。
python3 -m timeit '[x for x in range(10000000) if x % 2 == 0]'
1个循环,5个最佳:每循环270毫秒
python3 -m timeit 'list(filter(lambda x: x % 2 == 0, range(10000000)))'
1个循环,最好的5:432毫秒每循环
其他回答
一般过滤器稍快,如果使用内置函数。
在您的情况下,我希望列表理解稍微快一些
奇怪的是,在Python 3上,我看到过滤器执行得比列表推导更快。
我一直认为列表推导式的性能会更好。 喜欢的东西: [name为brand_names_db中的name,如果name不是None] 生成的字节码稍好一些。
>>> def f1(seq):
... return list(filter(None, seq))
>>> def f2(seq):
... return [i for i in seq if i is not None]
>>> disassemble(f1.__code__)
2 0 LOAD_GLOBAL 0 (list)
2 LOAD_GLOBAL 1 (filter)
4 LOAD_CONST 0 (None)
6 LOAD_FAST 0 (seq)
8 CALL_FUNCTION 2
10 CALL_FUNCTION 1
12 RETURN_VALUE
>>> disassemble(f2.__code__)
2 0 LOAD_CONST 1 (<code object <listcomp> at 0x10cfcaa50, file "<stdin>", line 2>)
2 LOAD_CONST 2 ('f2.<locals>.<listcomp>')
4 MAKE_FUNCTION 0
6 LOAD_FAST 0 (seq)
8 GET_ITER
10 CALL_FUNCTION 1
12 RETURN_VALUE
但它们实际上更慢:
>>> timeit(stmt="f1(range(1000))", setup="from __main__ import f1,f2")
21.177661532000116
>>> timeit(stmt="f2(range(1000))", setup="from __main__ import f1,f2")
42.233950221000214
过滤器就是这样。它过滤掉列表中的元素。你可以看到定义中提到了同样的内容(在我之前提到的官方文档链接中)。然而,列表理解是在对前一个列表上的内容进行操作后产生一个新的列表。(过滤器和列表推导式都创建新列表,而不执行替换旧列表的操作。这里的新列表类似于具有全新数据类型的列表。比如将整数转换为字符串,等等)
在您的示例中,根据定义,使用过滤器比使用列表理解更好。但是,如果您希望,例如列表元素中的other_attribute,在您的示例中是作为一个新列表检索,那么您可以使用列表推导式。
return [item.other_attribute for item in my_list if item.attribute==value]
这就是我对筛选器和列表理解的记忆。删除列表中的一些东西,并保持其他元素完整,使用过滤器。在元素上使用一些自己的逻辑,并创建一个适合某些目的的稀释列表,使用列表理解。
我会得出结论:使用列表理解而不是过滤器,因为它
更具可读性 更多的神谕的 更快(对于Python 3.11,参见附带的基准测试,也参见)
请记住,filter返回一个迭代器,而不是一个列表。
python3 -m timeit '[x for x in range(10000000) if x % 2 == 0]'
1个循环,5个最佳:每循环270毫秒
python3 -m timeit 'list(filter(lambda x: x % 2 == 0, range(10000000)))'
1个循环,最好的5:432毫秒每循环
我花了一些时间来熟悉高阶函数过滤器和映射。所以我习惯了他们,我实际上喜欢过滤器,因为它是明确的,它通过保持任何真实的过滤,我觉得很酷,我知道一些函数编程术语。
然后我读了这篇文章(Fluent Python Book):
映射和筛选函数仍然是内置的 在Python 3中,但是自从引入了列表推导式和generator ex‐ 压力没有那么重要。listcomp或genexp完成map和的工作 过滤器组合,但更可读。
现在我想,如果您可以使用已经广泛传播的习语(如列表推导)来实现它,那么为什么还要使用过滤器/映射的概念呢?此外,映射和过滤器是一种函数。在这种情况下,我更喜欢使用匿名函数lambdas。
最后,为了进行测试,我对两种方法(map和listComp)都进行了计时,我没有看到任何相关的速度差异,可以证明这是合理的。
from timeit import Timer
timeMap = Timer(lambda: list(map(lambda x: x*x, range(10**7))))
print(timeMap.timeit(number=100))
timeListComp = Timer(lambda:[(lambda x: x*x) for x in range(10**7)])
print(timeListComp.timeit(number=100))
#Map: 166.95695265199174
#List Comprehension 177.97208347299602