我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?

喜欢的东西:

if A>0.4 then if B<0.2 then if C>0.8 then class='X'

当前回答

我修改了Zelazny7提交的代码来打印一些伪代码:

def get_code(tree, feature_names):
        left      = tree.tree_.children_left
        right     = tree.tree_.children_right
        threshold = tree.tree_.threshold
        features  = [feature_names[i] for i in tree.tree_.feature]
        value = tree.tree_.value

        def recurse(left, right, threshold, features, node):
                if (threshold[node] != -2):
                        print "if ( " + features[node] + " <= " + str(threshold[node]) + " ) {"
                        if left[node] != -1:
                                recurse (left, right, threshold, features,left[node])
                        print "} else {"
                        if right[node] != -1:
                                recurse (left, right, threshold, features,right[node])
                        print "}"
                else:
                        print "return " + str(value[node])

        recurse(left, right, threshold, features, 0)

如果你在同一个例子中调用get_code(dt, df.columns),你会得到:

if ( col1 <= 0.5 ) {
return [[ 1.  0.]]
} else {
if ( col2 <= 4.5 ) {
return [[ 0.  1.]]
} else {
if ( col1 <= 2.5 ) {
return [[ 1.  0.]]
} else {
return [[ 0.  1.]]
}
}
}

其他回答

我相信这个答案比这里的其他答案更正确:

from sklearn.tree import _tree

def tree_to_code(tree, feature_names):
    tree_ = tree.tree_
    feature_name = [
        feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
        for i in tree_.feature
    ]
    print "def tree({}):".format(", ".join(feature_names))

    def recurse(node, depth):
        indent = "  " * depth
        if tree_.feature[node] != _tree.TREE_UNDEFINED:
            name = feature_name[node]
            threshold = tree_.threshold[node]
            print "{}if {} <= {}:".format(indent, name, threshold)
            recurse(tree_.children_left[node], depth + 1)
            print "{}else:  # if {} > {}".format(indent, name, threshold)
            recurse(tree_.children_right[node], depth + 1)
        else:
            print "{}return {}".format(indent, tree_.value[node])

    recurse(0, 1)

这将打印出一个有效的Python函数。下面是一个树的输出示例,它试图返回它的输入,一个0到10之间的数字。

def tree(f0):
  if f0 <= 6.0:
    if f0 <= 1.5:
      return [[ 0.]]
    else:  # if f0 > 1.5
      if f0 <= 4.5:
        if f0 <= 3.5:
          return [[ 3.]]
        else:  # if f0 > 3.5
          return [[ 4.]]
      else:  # if f0 > 4.5
        return [[ 5.]]
  else:  # if f0 > 6.0
    if f0 <= 8.5:
      if f0 <= 7.5:
        return [[ 7.]]
      else:  # if f0 > 7.5
        return [[ 8.]]
    else:  # if f0 > 8.5
      return [[ 9.]]

以下是我在其他答案中看到的一些绊脚石:

使用tree_。用阈值== -2来判断节点是否是叶节点不是一个好主意。如果它是一个阈值为-2的真实决策节点呢?相反,你应该看看树。Feature or tree.children_*。 对于tree_中的i,行features = [feature_names[i]。我的sklearn版本崩溃了,因为树。树_。特征为-2(特别是叶节点)。 递归函数中不需要有多个if语句,一个就可以了。

您还可以通过区分它属于哪个类,甚至通过提到它的输出值,使它具有更丰富的信息。

def print_decision_tree(tree, feature_names, offset_unit='    '):    
left      = tree.tree_.children_left
right     = tree.tree_.children_right
threshold = tree.tree_.threshold
value = tree.tree_.value
if feature_names is None:
    features  = ['f%d'%i for i in tree.tree_.feature]
else:
    features  = [feature_names[i] for i in tree.tree_.feature]        

def recurse(left, right, threshold, features, node, depth=0):
        offset = offset_unit*depth
        if (threshold[node] != -2):
                print(offset+"if ( " + features[node] + " <= " + str(threshold[node]) + " ) {")
                if left[node] != -1:
                        recurse (left, right, threshold, features,left[node],depth+1)
                print(offset+"} else {")
                if right[node] != -1:
                        recurse (left, right, threshold, features,right[node],depth+1)
                print(offset+"}")
        else:
                #print(offset,value[node]) 

                #To remove values from node
                temp=str(value[node])
                mid=len(temp)//2
                tempx=[]
                tempy=[]
                cnt=0
                for i in temp:
                    if cnt<=mid:
                        tempx.append(i)
                        cnt+=1
                    else:
                        tempy.append(i)
                        cnt+=1
                val_yes=[]
                val_no=[]
                res=[]
                for j in tempx:
                    if j=="[" or j=="]" or j=="." or j==" ":
                        res.append(j)
                    else:
                        val_no.append(j)
                for j in tempy:
                    if j=="[" or j=="]" or j=="." or j==" ":
                        res.append(j)
                    else:
                        val_yes.append(j)
                val_yes = int("".join(map(str, val_yes)))
                val_no = int("".join(map(str, val_no)))

                if val_yes>val_no:
                    print(offset,'\033[1m',"YES")
                    print('\033[0m')
                elif val_no>val_yes:
                    print(offset,'\033[1m',"NO")
                    print('\033[0m')
                else:
                    print(offset,'\033[1m',"Tie")
                    print('\033[0m')

recurse(left, right, threshold, features, 0,0)

我创建了自己的函数,从sklearn创建的决策树中提取规则:

import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier

# dummy data:
df = pd.DataFrame({'col1':[0,1,2,3],'col2':[3,4,5,6],'dv':[0,1,0,1]})

# create decision tree
dt = DecisionTreeClassifier(max_depth=5, min_samples_leaf=1)
dt.fit(df.ix[:,:2], df.dv)

这个函数首先从节点(在子数组中由-1标识)开始,然后递归地查找父节点。我称之为节点的“沿袭”。在此过程中,我获取了我需要创建if/then/else SAS逻辑的值:

def get_lineage(tree, feature_names):
     left      = tree.tree_.children_left
     right     = tree.tree_.children_right
     threshold = tree.tree_.threshold
     features  = [feature_names[i] for i in tree.tree_.feature]

     # get ids of child nodes
     idx = np.argwhere(left == -1)[:,0]     

     def recurse(left, right, child, lineage=None):          
          if lineage is None:
               lineage = [child]
          if child in left:
               parent = np.where(left == child)[0].item()
               split = 'l'
          else:
               parent = np.where(right == child)[0].item()
               split = 'r'

          lineage.append((parent, split, threshold[parent], features[parent]))

          if parent == 0:
               lineage.reverse()
               return lineage
          else:
               return recurse(left, right, parent, lineage)

     for child in idx:
          for node in recurse(left, right, child):
               print node

下面的元组集包含了创建SAS if/then/else语句所需的所有内容。我不喜欢在SAS中使用do块,这就是为什么我创建逻辑来描述节点的整个路径。元组后的单个整数为路径中终端节点的ID。所有前面的元组组合起来创建该节点。

In [1]: get_lineage(dt, df.columns)
(0, 'l', 0.5, 'col1')
1
(0, 'r', 0.5, 'col1')
(2, 'l', 4.5, 'col2')
3
(0, 'r', 0.5, 'col1')
(2, 'r', 4.5, 'col2')
(4, 'l', 2.5, 'col1')
5
(0, 'r', 0.5, 'col1')
(2, 'r', 4.5, 'col2')
(4, 'r', 2.5, 'col1')
6

显然,很久以前就有人决定尝试将以下函数添加到官方scikit的树导出函数中(基本上只支持export_graphviz)

def export_dict(tree, feature_names=None, max_depth=None) :
    """Export a decision tree in dict format.

以下是他的全部承诺:

https://github.com/scikit-learn/scikit-learn/blob/79bdc8f711d0af225ed6be9fdb708cea9f98a910/sklearn/tree/export.py

不太确定这条评论发生了什么。但是你也可以尝试使用这个函数。

我认为这为scikit-learn的优秀人员提供了一个严肃的文档需求,以正确地记录sklearn.tree.Tree API,这是一个底层的树结构,DecisionTreeClassifier将其作为属性tree_公开。

Scikit learn在0.21版(2019年5月)中引入了一个名为export_text的有趣的新方法,用于从树中提取规则。这里的文档。不再需要创建自定义函数。

一旦你适应了你的模型,你只需要两行代码。首先,导入export_text:

from sklearn.tree import export_text

其次,创建一个包含规则的对象。为了使规则看起来更具可读性,使用feature_names参数并传递一个特性名称列表。例如,如果你的模型是model,你的特征是在一个名为X_train的数据框架中命名的,你可以创建一个名为tree_rules的对象:

tree_rules = export_text(model, feature_names=list(X_train.columns))

然后打印或保存tree_rules。输出如下所示:

|--- Age <= 0.63
|   |--- EstimatedSalary <= 0.61
|   |   |--- Age <= -0.16
|   |   |   |--- class: 0
|   |   |--- Age >  -0.16
|   |   |   |--- EstimatedSalary <= -0.06
|   |   |   |   |--- class: 0
|   |   |   |--- EstimatedSalary >  -0.06
|   |   |   |   |--- EstimatedSalary <= 0.40
|   |   |   |   |   |--- EstimatedSalary <= 0.03
|   |   |   |   |   |   |--- class: 1