我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?

喜欢的东西:

if A>0.4 then if B<0.2 then if C>0.8 then class='X'

当前回答

我修改了Zelazny7提交的代码来打印一些伪代码:

def get_code(tree, feature_names):
        left      = tree.tree_.children_left
        right     = tree.tree_.children_right
        threshold = tree.tree_.threshold
        features  = [feature_names[i] for i in tree.tree_.feature]
        value = tree.tree_.value

        def recurse(left, right, threshold, features, node):
                if (threshold[node] != -2):
                        print "if ( " + features[node] + " <= " + str(threshold[node]) + " ) {"
                        if left[node] != -1:
                                recurse (left, right, threshold, features,left[node])
                        print "} else {"
                        if right[node] != -1:
                                recurse (left, right, threshold, features,right[node])
                        print "}"
                else:
                        print "return " + str(value[node])

        recurse(left, right, threshold, features, 0)

如果你在同一个例子中调用get_code(dt, df.columns),你会得到:

if ( col1 <= 0.5 ) {
return [[ 1.  0.]]
} else {
if ( col2 <= 4.5 ) {
return [[ 0.  1.]]
} else {
if ( col1 <= 2.5 ) {
return [[ 1.  0.]]
} else {
return [[ 0.  1.]]
}
}
}

其他回答

您还可以通过区分它属于哪个类,甚至通过提到它的输出值,使它具有更丰富的信息。

def print_decision_tree(tree, feature_names, offset_unit='    '):    
left      = tree.tree_.children_left
right     = tree.tree_.children_right
threshold = tree.tree_.threshold
value = tree.tree_.value
if feature_names is None:
    features  = ['f%d'%i for i in tree.tree_.feature]
else:
    features  = [feature_names[i] for i in tree.tree_.feature]        

def recurse(left, right, threshold, features, node, depth=0):
        offset = offset_unit*depth
        if (threshold[node] != -2):
                print(offset+"if ( " + features[node] + " <= " + str(threshold[node]) + " ) {")
                if left[node] != -1:
                        recurse (left, right, threshold, features,left[node],depth+1)
                print(offset+"} else {")
                if right[node] != -1:
                        recurse (left, right, threshold, features,right[node],depth+1)
                print(offset+"}")
        else:
                #print(offset,value[node]) 

                #To remove values from node
                temp=str(value[node])
                mid=len(temp)//2
                tempx=[]
                tempy=[]
                cnt=0
                for i in temp:
                    if cnt<=mid:
                        tempx.append(i)
                        cnt+=1
                    else:
                        tempy.append(i)
                        cnt+=1
                val_yes=[]
                val_no=[]
                res=[]
                for j in tempx:
                    if j=="[" or j=="]" or j=="." or j==" ":
                        res.append(j)
                    else:
                        val_no.append(j)
                for j in tempy:
                    if j=="[" or j=="]" or j=="." or j==" ":
                        res.append(j)
                    else:
                        val_yes.append(j)
                val_yes = int("".join(map(str, val_yes)))
                val_no = int("".join(map(str, val_no)))

                if val_yes>val_no:
                    print(offset,'\033[1m',"YES")
                    print('\033[0m')
                elif val_no>val_yes:
                    print(offset,'\033[1m',"NO")
                    print('\033[0m')
                else:
                    print(offset,'\033[1m',"Tie")
                    print('\033[0m')

recurse(left, right, threshold, features, 0,0)

这是您需要的代码

我已经修改了顶部喜欢的代码缩进在一个jupyter笔记本python 3正确

import numpy as np
from sklearn.tree import _tree

def tree_to_code(tree, feature_names):
    tree_ = tree.tree_
    feature_name = [feature_names[i] 
                    if i != _tree.TREE_UNDEFINED else "undefined!" 
                    for i in tree_.feature]
    print("def tree({}):".format(", ".join(feature_names)))

    def recurse(node, depth):
        indent = "    " * depth
        if tree_.feature[node] != _tree.TREE_UNDEFINED:
            name = feature_name[node]
            threshold = tree_.threshold[node]
            print("{}if {} <= {}:".format(indent, name, threshold))
            recurse(tree_.children_left[node], depth + 1)
            print("{}else:  # if {} > {}".format(indent, name, threshold))
            recurse(tree_.children_right[node], depth + 1)
        else:
            print("{}return {}".format(indent, np.argmax(tree_.value[node])))

    recurse(0, 1)

下面的代码是我在anaconda python 2.7下的方法,加上一个包名“pydot-ng”,以制作具有决策规则的PDF文件。希望对大家有所帮助。

from sklearn import tree

clf = tree.DecisionTreeClassifier(max_leaf_nodes=n)
clf_ = clf.fit(X, data_y)

feature_names = X.columns
class_name = clf_.classes_.astype(int).astype(str)

def output_pdf(clf_, name):
    from sklearn import tree
    from sklearn.externals.six import StringIO
    import pydot_ng as pydot
    dot_data = StringIO()
    tree.export_graphviz(clf_, out_file=dot_data,
                         feature_names=feature_names,
                         class_names=class_name,
                         filled=True, rounded=True,
                         special_characters=True,
                          node_ids=1,)
    graph = pydot.graph_from_dot_data(dot_data.getvalue())
    graph.write_pdf("%s.pdf"%name)

output_pdf(clf_, name='filename%s'%n)

这是一个树形图

下面是我以一种可以直接在sql中使用的形式提取决策规则的方法,这样数据就可以按节点分组。(根据之前海报的做法)

结果将是后续的CASE子句,可以复制到sql语句,例如。

SELECT COALESCE(*CASE WHEN <conditions> THEN > <NodeA>*, >* CASE WHEN <条件> THEN <NodeB>*, > ....)* > FROM <表或视图>


import numpy as np

import pickle
feature_names=.............
features  = [feature_names[i] for i in range(len(feature_names))]
clf= pickle.loads(trained_model)
impurity=clf.tree_.impurity
importances = clf.feature_importances_
SqlOut=""

#global Conts
global ContsNode
global Path
#Conts=[]#
ContsNode=[]
Path=[]
global Results
Results=[]

def print_decision_tree(tree, feature_names, offset_unit=''    ''):    
    left      = tree.tree_.children_left
    right     = tree.tree_.children_right
    threshold = tree.tree_.threshold
    value = tree.tree_.value

    if feature_names is None:
        features  = [''f%d''%i for i in tree.tree_.feature]
    else:
        features  = [feature_names[i] for i in tree.tree_.feature]        

    def recurse(left, right, threshold, features, node, depth=0,ParentNode=0,IsElse=0):
        global Conts
        global ContsNode
        global Path
        global Results
        global LeftParents
        LeftParents=[]
        global RightParents
        RightParents=[]
        for i in range(len(left)): # This is just to tell you how to create a list.
            LeftParents.append(-1)
            RightParents.append(-1)
            ContsNode.append("")
            Path.append("")


        for i in range(len(left)): # i is node
            if (left[i]==-1 and right[i]==-1):      
                if LeftParents[i]>=0:
                    if Path[LeftParents[i]]>" ":
                        Path[i]=Path[LeftParents[i]]+" AND " +ContsNode[LeftParents[i]]                                 
                    else:
                        Path[i]=ContsNode[LeftParents[i]]                                   
                if RightParents[i]>=0:
                    if Path[RightParents[i]]>" ":
                        Path[i]=Path[RightParents[i]]+" AND not " +ContsNode[RightParents[i]]                                   
                    else:
                        Path[i]=" not " +ContsNode[RightParents[i]]                     
                Results.append(" case when  " +Path[i]+"  then ''" +"{:4d}".format(i)+ " "+"{:2.2f}".format(impurity[i])+" "+Path[i][0:180]+"''")

            else:       
                if LeftParents[i]>=0:
                    if Path[LeftParents[i]]>" ":
                        Path[i]=Path[LeftParents[i]]+" AND " +ContsNode[LeftParents[i]]                                 
                    else:
                        Path[i]=ContsNode[LeftParents[i]]                                   
                if RightParents[i]>=0:
                    if Path[RightParents[i]]>" ":
                        Path[i]=Path[RightParents[i]]+" AND not " +ContsNode[RightParents[i]]                                   
                    else:
                        Path[i]=" not "+ContsNode[RightParents[i]]                      
                if (left[i]!=-1):
                    LeftParents[left[i]]=i
                if (right[i]!=-1):
                    RightParents[right[i]]=i
                ContsNode[i]=   "( "+ features[i] + " <= " + str(threshold[i])   + " ) "

    recurse(left, right, threshold, features, 0,0,0,0)
print_decision_tree(clf,features)
SqlOut=""
for i in range(len(Results)): 
    SqlOut=SqlOut+Results[i]+ " end,"+chr(13)+chr(10)

下面是一个函数,在python3下打印scikit-learn决策树的规则,并对条件块进行偏移,使结构更具可读性:

def print_decision_tree(tree, feature_names=None, offset_unit='    '):
    '''Plots textual representation of rules of a decision tree
    tree: scikit-learn representation of tree
    feature_names: list of feature names. They are set to f1,f2,f3,... if not specified
    offset_unit: a string of offset of the conditional block'''

    left      = tree.tree_.children_left
    right     = tree.tree_.children_right
    threshold = tree.tree_.threshold
    value = tree.tree_.value
    if feature_names is None:
        features  = ['f%d'%i for i in tree.tree_.feature]
    else:
        features  = [feature_names[i] for i in tree.tree_.feature]        

    def recurse(left, right, threshold, features, node, depth=0):
            offset = offset_unit*depth
            if (threshold[node] != -2):
                    print(offset+"if ( " + features[node] + " <= " + str(threshold[node]) + " ) {")
                    if left[node] != -1:
                            recurse (left, right, threshold, features,left[node],depth+1)
                    print(offset+"} else {")
                    if right[node] != -1:
                            recurse (left, right, threshold, features,right[node],depth+1)
                    print(offset+"}")
            else:
                    print(offset+"return " + str(value[node]))

    recurse(left, right, threshold, features, 0,0)