我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
当前回答
只需使用sklearn中的函数。像这样的树
from sklearn.tree import export_graphviz
export_graphviz(tree,
out_file = "tree.dot",
feature_names = tree.columns) //or just ["petal length", "petal width"]
然后在项目文件夹中查找文件树。点,复制所有的内容,并粘贴到这里http://www.webgraphviz.com/,并生成您的图形:)
其他回答
修改了Zelazny7的代码以从决策树中获取SQL。
# SQL from decision tree
def get_lineage(tree, feature_names):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
features = [feature_names[i] for i in tree.tree_.feature]
le='<='
g ='>'
# get ids of child nodes
idx = np.argwhere(left == -1)[:,0]
def recurse(left, right, child, lineage=None):
if lineage is None:
lineage = [child]
if child in left:
parent = np.where(left == child)[0].item()
split = 'l'
else:
parent = np.where(right == child)[0].item()
split = 'r'
lineage.append((parent, split, threshold[parent], features[parent]))
if parent == 0:
lineage.reverse()
return lineage
else:
return recurse(left, right, parent, lineage)
print 'case '
for j,child in enumerate(idx):
clause=' when '
for node in recurse(left, right, child):
if len(str(node))<3:
continue
i=node
if i[1]=='l': sign=le
else: sign=g
clause=clause+i[3]+sign+str(i[2])+' and '
clause=clause[:-4]+' then '+str(j)
print clause
print 'else 99 end as clusters'
只需使用sklearn中的函数。像这样的树
from sklearn.tree import export_graphviz
export_graphviz(tree,
out_file = "tree.dot",
feature_names = tree.columns) //or just ["petal length", "petal width"]
然后在项目文件夹中查找文件树。点,复制所有的内容,并粘贴到这里http://www.webgraphviz.com/,并生成您的图形:)
显然,很久以前就有人决定尝试将以下函数添加到官方scikit的树导出函数中(基本上只支持export_graphviz)
def export_dict(tree, feature_names=None, max_depth=None) :
"""Export a decision tree in dict format.
以下是他的全部承诺:
https://github.com/scikit-learn/scikit-learn/blob/79bdc8f711d0af225ed6be9fdb708cea9f98a910/sklearn/tree/export.py
不太确定这条评论发生了什么。但是你也可以尝试使用这个函数。
我认为这为scikit-learn的优秀人员提供了一个严肃的文档需求,以正确地记录sklearn.tree.Tree API,这是一个底层的树结构,DecisionTreeClassifier将其作为属性tree_公开。
from StringIO import StringIO
out = StringIO()
out = tree.export_graphviz(clf, out_file=out)
print out.getvalue()
你可以看到一个有向图树。然后,clf.tree_。Feature和clf.tree_。值分别为节点数组拆分特征和节点数组值。你可以参考这个github来源的更多细节。
我创建了自己的函数,从sklearn创建的决策树中提取规则:
import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier
# dummy data:
df = pd.DataFrame({'col1':[0,1,2,3],'col2':[3,4,5,6],'dv':[0,1,0,1]})
# create decision tree
dt = DecisionTreeClassifier(max_depth=5, min_samples_leaf=1)
dt.fit(df.ix[:,:2], df.dv)
这个函数首先从节点(在子数组中由-1标识)开始,然后递归地查找父节点。我称之为节点的“沿袭”。在此过程中,我获取了我需要创建if/then/else SAS逻辑的值:
def get_lineage(tree, feature_names):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
features = [feature_names[i] for i in tree.tree_.feature]
# get ids of child nodes
idx = np.argwhere(left == -1)[:,0]
def recurse(left, right, child, lineage=None):
if lineage is None:
lineage = [child]
if child in left:
parent = np.where(left == child)[0].item()
split = 'l'
else:
parent = np.where(right == child)[0].item()
split = 'r'
lineage.append((parent, split, threshold[parent], features[parent]))
if parent == 0:
lineage.reverse()
return lineage
else:
return recurse(left, right, parent, lineage)
for child in idx:
for node in recurse(left, right, child):
print node
下面的元组集包含了创建SAS if/then/else语句所需的所有内容。我不喜欢在SAS中使用do块,这就是为什么我创建逻辑来描述节点的整个路径。元组后的单个整数为路径中终端节点的ID。所有前面的元组组合起来创建该节点。
In [1]: get_lineage(dt, df.columns)
(0, 'l', 0.5, 'col1')
1
(0, 'r', 0.5, 'col1')
(2, 'l', 4.5, 'col2')
3
(0, 'r', 0.5, 'col1')
(2, 'r', 4.5, 'col2')
(4, 'l', 2.5, 'col1')
5
(0, 'r', 0.5, 'col1')
(2, 'r', 4.5, 'col2')
(4, 'r', 2.5, 'col1')
6