我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
当前回答
from StringIO import StringIO
out = StringIO()
out = tree.export_graphviz(clf, out_file=out)
print out.getvalue()
你可以看到一个有向图树。然后,clf.tree_。Feature和clf.tree_。值分别为节点数组拆分特征和节点数组值。你可以参考这个github来源的更多细节。
其他回答
from StringIO import StringIO
out = StringIO()
out = tree.export_graphviz(clf, out_file=out)
print out.getvalue()
你可以看到一个有向图树。然后,clf.tree_。Feature和clf.tree_。值分别为节点数组拆分特征和节点数组值。你可以参考这个github来源的更多细节。
修改了Zelazny7的代码以从决策树中获取SQL。
# SQL from decision tree
def get_lineage(tree, feature_names):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
features = [feature_names[i] for i in tree.tree_.feature]
le='<='
g ='>'
# get ids of child nodes
idx = np.argwhere(left == -1)[:,0]
def recurse(left, right, child, lineage=None):
if lineage is None:
lineage = [child]
if child in left:
parent = np.where(left == child)[0].item()
split = 'l'
else:
parent = np.where(right == child)[0].item()
split = 'r'
lineage.append((parent, split, threshold[parent], features[parent]))
if parent == 0:
lineage.reverse()
return lineage
else:
return recurse(left, right, parent, lineage)
print 'case '
for j,child in enumerate(idx):
clause=' when '
for node in recurse(left, right, child):
if len(str(node))<3:
continue
i=node
if i[1]=='l': sign=le
else: sign=g
clause=clause+i[3]+sign+str(i[2])+' and '
clause=clause[:-4]+' then '+str(j)
print clause
print 'else 99 end as clusters'
这是您需要的代码
我已经修改了顶部喜欢的代码缩进在一个jupyter笔记本python 3正确
import numpy as np
from sklearn.tree import _tree
def tree_to_code(tree, feature_names):
tree_ = tree.tree_
feature_name = [feature_names[i]
if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature]
print("def tree({}):".format(", ".join(feature_names)))
def recurse(node, depth):
indent = " " * depth
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
print("{}if {} <= {}:".format(indent, name, threshold))
recurse(tree_.children_left[node], depth + 1)
print("{}else: # if {} > {}".format(indent, name, threshold))
recurse(tree_.children_right[node], depth + 1)
else:
print("{}return {}".format(indent, np.argmax(tree_.value[node])))
recurse(0, 1)
下面是一个通过转换export_text的输出从决策树生成Python代码的函数:
import string
from sklearn.tree import export_text
def export_py_code(tree, feature_names, max_depth=100, spacing=4):
if spacing < 2:
raise ValueError('spacing must be > 1')
# Clean up feature names (for correctness)
nums = string.digits
alnums = string.ascii_letters + nums
clean = lambda s: ''.join(c if c in alnums else '_' for c in s)
features = [clean(x) for x in feature_names]
features = ['_'+x if x[0] in nums else x for x in features if x]
if len(set(features)) != len(feature_names):
raise ValueError('invalid feature names')
# First: export tree to text
res = export_text(tree, feature_names=features,
max_depth=max_depth,
decimals=6,
spacing=spacing-1)
# Second: generate Python code from the text
skip, dash = ' '*spacing, '-'*(spacing-1)
code = 'def decision_tree({}):\n'.format(', '.join(features))
for line in repr(tree).split('\n'):
code += skip + "# " + line + '\n'
for line in res.split('\n'):
line = line.rstrip().replace('|',' ')
if '<' in line or '>' in line:
line, val = line.rsplit(maxsplit=1)
line = line.replace(' ' + dash, 'if')
line = '{} {:g}:'.format(line, float(val))
else:
line = line.replace(' {} class:'.format(dash), 'return')
code += skip + line + '\n'
return code
示例用法:
res = export_py_code(tree, feature_names=names, spacing=4)
print (res)
样例输出:
def decision_tree(f1, f2, f3):
# DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=3,
# max_features=None, max_leaf_nodes=None,
# min_impurity_decrease=0.0, min_impurity_split=None,
# min_samples_leaf=1, min_samples_split=2,
# min_weight_fraction_leaf=0.0, presort=False,
# random_state=42, splitter='best')
if f1 <= 12.5:
if f2 <= 17.5:
if f1 <= 10.5:
return 2
if f1 > 10.5:
return 3
if f2 > 17.5:
if f2 <= 22.5:
return 1
if f2 > 22.5:
return 1
if f1 > 12.5:
if f1 <= 17.5:
if f3 <= 23.5:
return 2
if f3 > 23.5:
return 3
if f1 > 17.5:
if f1 <= 25:
return 1
if f1 > 25:
return 2
上面的示例生成了names = ['f'+str(j+1) for j in range(NUM_FEATURES)]。
一个方便的功能是,它可以生成更小的文件大小与减少间距。只需要设置spacing=2。
下面是我以一种可以直接在sql中使用的形式提取决策规则的方法,这样数据就可以按节点分组。(根据之前海报的做法)
结果将是后续的CASE子句,可以复制到sql语句,例如。
SELECT COALESCE(*CASE WHEN <conditions> THEN > <NodeA>*, >* CASE WHEN <条件> THEN <NodeB>*, > ....)* > FROM <表或视图>
import numpy as np
import pickle
feature_names=.............
features = [feature_names[i] for i in range(len(feature_names))]
clf= pickle.loads(trained_model)
impurity=clf.tree_.impurity
importances = clf.feature_importances_
SqlOut=""
#global Conts
global ContsNode
global Path
#Conts=[]#
ContsNode=[]
Path=[]
global Results
Results=[]
def print_decision_tree(tree, feature_names, offset_unit='' ''):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
value = tree.tree_.value
if feature_names is None:
features = [''f%d''%i for i in tree.tree_.feature]
else:
features = [feature_names[i] for i in tree.tree_.feature]
def recurse(left, right, threshold, features, node, depth=0,ParentNode=0,IsElse=0):
global Conts
global ContsNode
global Path
global Results
global LeftParents
LeftParents=[]
global RightParents
RightParents=[]
for i in range(len(left)): # This is just to tell you how to create a list.
LeftParents.append(-1)
RightParents.append(-1)
ContsNode.append("")
Path.append("")
for i in range(len(left)): # i is node
if (left[i]==-1 and right[i]==-1):
if LeftParents[i]>=0:
if Path[LeftParents[i]]>" ":
Path[i]=Path[LeftParents[i]]+" AND " +ContsNode[LeftParents[i]]
else:
Path[i]=ContsNode[LeftParents[i]]
if RightParents[i]>=0:
if Path[RightParents[i]]>" ":
Path[i]=Path[RightParents[i]]+" AND not " +ContsNode[RightParents[i]]
else:
Path[i]=" not " +ContsNode[RightParents[i]]
Results.append(" case when " +Path[i]+" then ''" +"{:4d}".format(i)+ " "+"{:2.2f}".format(impurity[i])+" "+Path[i][0:180]+"''")
else:
if LeftParents[i]>=0:
if Path[LeftParents[i]]>" ":
Path[i]=Path[LeftParents[i]]+" AND " +ContsNode[LeftParents[i]]
else:
Path[i]=ContsNode[LeftParents[i]]
if RightParents[i]>=0:
if Path[RightParents[i]]>" ":
Path[i]=Path[RightParents[i]]+" AND not " +ContsNode[RightParents[i]]
else:
Path[i]=" not "+ContsNode[RightParents[i]]
if (left[i]!=-1):
LeftParents[left[i]]=i
if (right[i]!=-1):
RightParents[right[i]]=i
ContsNode[i]= "( "+ features[i] + " <= " + str(threshold[i]) + " ) "
recurse(left, right, threshold, features, 0,0,0,0)
print_decision_tree(clf,features)
SqlOut=""
for i in range(len(Results)):
SqlOut=SqlOut+Results[i]+ " end,"+chr(13)+chr(10)