我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?

喜欢的东西:

if A>0.4 then if B<0.2 then if C>0.8 then class='X'

当前回答

from StringIO import StringIO
out = StringIO()
out = tree.export_graphviz(clf, out_file=out)
print out.getvalue()

你可以看到一个有向图树。然后,clf.tree_。Feature和clf.tree_。值分别为节点数组拆分特征和节点数组值。你可以参考这个github来源的更多细节。

其他回答

这是基于@paulkernfeld的回答。如果你有一个包含特征的数据框架X和一个包含共振的目标数据框架y,你想知道哪个y值结束于哪个节点(并相应地绘制它),你可以做以下工作:

    def tree_to_code(tree, feature_names):
        from sklearn.tree import _tree
        codelines = []
        codelines.append('def get_cat(X_tmp):\n')
        codelines.append('   catout = []\n')
        codelines.append('   for codelines in range(0,X_tmp.shape[0]):\n')
        codelines.append('      Xin = X_tmp.iloc[codelines]\n')
        tree_ = tree.tree_
        feature_name = [
            feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
            for i in tree_.feature
        ]
        #print "def tree({}):".format(", ".join(feature_names))

        def recurse(node, depth):
            indent = "      " * depth
            if tree_.feature[node] != _tree.TREE_UNDEFINED:
                name = feature_name[node]
                threshold = tree_.threshold[node]
                codelines.append ('{}if Xin["{}"] <= {}:\n'.format(indent, name, threshold))
                recurse(tree_.children_left[node], depth + 1)
                codelines.append( '{}else:  # if Xin["{}"] > {}\n'.format(indent, name, threshold))
                recurse(tree_.children_right[node], depth + 1)
            else:
                codelines.append( '{}mycat = {}\n'.format(indent, node))

        recurse(0, 1)
        codelines.append('      catout.append(mycat)\n')
        codelines.append('   return pd.DataFrame(catout,index=X_tmp.index,columns=["category"])\n')
        codelines.append('node_ids = get_cat(X)\n')
        return codelines
    mycode = tree_to_code(clf,X.columns.values)

    # now execute the function and obtain the dataframe with all nodes
    exec(''.join(mycode))
    node_ids = [int(x[0]) for x in node_ids.values]
    node_ids2 = pd.DataFrame(node_ids)

    print('make plot')
    import matplotlib.cm as cm
    colors = cm.rainbow(np.linspace(0, 1, 1+max( list(set(node_ids)))))
    #plt.figure(figsize=cm2inch(24, 21))
    for i in list(set(node_ids)):
        plt.plot(y[node_ids2.values==i],'o',color=colors[i], label=str(i))  
    mytitle = ['y colored by node']
    plt.title(mytitle ,fontsize=14)
    plt.xlabel('my xlabel')
    plt.ylabel(tagname)
    plt.xticks(rotation=70)       
    plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.00), shadow=True, ncol=9)
    plt.tight_layout()
    plt.show()
    plt.close 

不是最优雅的版本,但它做到了…

我创建了自己的函数,从sklearn创建的决策树中提取规则:

import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier

# dummy data:
df = pd.DataFrame({'col1':[0,1,2,3],'col2':[3,4,5,6],'dv':[0,1,0,1]})

# create decision tree
dt = DecisionTreeClassifier(max_depth=5, min_samples_leaf=1)
dt.fit(df.ix[:,:2], df.dv)

这个函数首先从节点(在子数组中由-1标识)开始,然后递归地查找父节点。我称之为节点的“沿袭”。在此过程中,我获取了我需要创建if/then/else SAS逻辑的值:

def get_lineage(tree, feature_names):
     left      = tree.tree_.children_left
     right     = tree.tree_.children_right
     threshold = tree.tree_.threshold
     features  = [feature_names[i] for i in tree.tree_.feature]

     # get ids of child nodes
     idx = np.argwhere(left == -1)[:,0]     

     def recurse(left, right, child, lineage=None):          
          if lineage is None:
               lineage = [child]
          if child in left:
               parent = np.where(left == child)[0].item()
               split = 'l'
          else:
               parent = np.where(right == child)[0].item()
               split = 'r'

          lineage.append((parent, split, threshold[parent], features[parent]))

          if parent == 0:
               lineage.reverse()
               return lineage
          else:
               return recurse(left, right, parent, lineage)

     for child in idx:
          for node in recurse(left, right, child):
               print node

下面的元组集包含了创建SAS if/then/else语句所需的所有内容。我不喜欢在SAS中使用do块,这就是为什么我创建逻辑来描述节点的整个路径。元组后的单个整数为路径中终端节点的ID。所有前面的元组组合起来创建该节点。

In [1]: get_lineage(dt, df.columns)
(0, 'l', 0.5, 'col1')
1
(0, 'r', 0.5, 'col1')
(2, 'l', 4.5, 'col2')
3
(0, 'r', 0.5, 'col1')
(2, 'r', 4.5, 'col2')
(4, 'l', 2.5, 'col1')
5
(0, 'r', 0.5, 'col1')
(2, 'r', 4.5, 'col2')
(4, 'r', 2.5, 'col1')
6

现在可以使用export_text了。

from sklearn.tree import export_text

r = export_text(loan_tree, feature_names=(list(X_train.columns)))
print(r)

来自[sklearn][1]的完整示例

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_text
iris = load_iris()
X = iris['data']
y = iris['target']
decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2)
decision_tree = decision_tree.fit(X, y)
r = export_text(decision_tree, feature_names=iris['feature_names'])
print(r)

下面是一个通过转换export_text的输出从决策树生成Python代码的函数:

import string
from sklearn.tree import export_text

def export_py_code(tree, feature_names, max_depth=100, spacing=4):
    if spacing < 2:
        raise ValueError('spacing must be > 1')

    # Clean up feature names (for correctness)
    nums = string.digits
    alnums = string.ascii_letters + nums
    clean = lambda s: ''.join(c if c in alnums else '_' for c in s)
    features = [clean(x) for x in feature_names]
    features = ['_'+x if x[0] in nums else x for x in features if x]
    if len(set(features)) != len(feature_names):
        raise ValueError('invalid feature names')

    # First: export tree to text
    res = export_text(tree, feature_names=features, 
                        max_depth=max_depth,
                        decimals=6,
                        spacing=spacing-1)

    # Second: generate Python code from the text
    skip, dash = ' '*spacing, '-'*(spacing-1)
    code = 'def decision_tree({}):\n'.format(', '.join(features))
    for line in repr(tree).split('\n'):
        code += skip + "# " + line + '\n'
    for line in res.split('\n'):
        line = line.rstrip().replace('|',' ')
        if '<' in line or '>' in line:
            line, val = line.rsplit(maxsplit=1)
            line = line.replace(' ' + dash, 'if')
            line = '{} {:g}:'.format(line, float(val))
        else:
            line = line.replace(' {} class:'.format(dash), 'return')
        code += skip + line + '\n'

    return code

示例用法:

res = export_py_code(tree, feature_names=names, spacing=4)
print (res)

样例输出:

def decision_tree(f1, f2, f3):
    # DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=3,
    #                        max_features=None, max_leaf_nodes=None,
    #                        min_impurity_decrease=0.0, min_impurity_split=None,
    #                        min_samples_leaf=1, min_samples_split=2,
    #                        min_weight_fraction_leaf=0.0, presort=False,
    #                        random_state=42, splitter='best')
    if f1 <= 12.5:
        if f2 <= 17.5:
            if f1 <= 10.5:
                return 2
            if f1 > 10.5:
                return 3
        if f2 > 17.5:
            if f2 <= 22.5:
                return 1
            if f2 > 22.5:
                return 1
    if f1 > 12.5:
        if f1 <= 17.5:
            if f3 <= 23.5:
                return 2
            if f3 > 23.5:
                return 3
        if f1 > 17.5:
            if f1 <= 25:
                return 1
            if f1 > 25:
                return 2

上面的示例生成了names = ['f'+str(j+1) for j in range(NUM_FEATURES)]。

一个方便的功能是,它可以生成更小的文件大小与减少间距。只需要设置spacing=2。

只需使用sklearn中的函数。像这样的树

from sklearn.tree import export_graphviz
    export_graphviz(tree,
                out_file = "tree.dot",
                feature_names = tree.columns) //or just ["petal length", "petal width"]

然后在项目文件夹中查找文件树。点,复制所有的内容,并粘贴到这里http://www.webgraphviz.com/,并生成您的图形:)