我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?

喜欢的东西:

if A>0.4 then if B<0.2 then if C>0.8 then class='X'

当前回答

Scikit learn在0.21版(2019年5月)中引入了一个名为export_text的有趣的新方法,用于从树中提取规则。这里的文档。不再需要创建自定义函数。

一旦你适应了你的模型,你只需要两行代码。首先,导入export_text:

from sklearn.tree import export_text

其次,创建一个包含规则的对象。为了使规则看起来更具可读性,使用feature_names参数并传递一个特性名称列表。例如,如果你的模型是model,你的特征是在一个名为X_train的数据框架中命名的,你可以创建一个名为tree_rules的对象:

tree_rules = export_text(model, feature_names=list(X_train.columns))

然后打印或保存tree_rules。输出如下所示:

|--- Age <= 0.63
|   |--- EstimatedSalary <= 0.61
|   |   |--- Age <= -0.16
|   |   |   |--- class: 0
|   |   |--- Age >  -0.16
|   |   |   |--- EstimatedSalary <= -0.06
|   |   |   |   |--- class: 0
|   |   |   |--- EstimatedSalary >  -0.06
|   |   |   |   |--- EstimatedSalary <= 0.40
|   |   |   |   |   |--- EstimatedSalary <= 0.03
|   |   |   |   |   |   |--- class: 1

其他回答

这是您需要的代码

我已经修改了顶部喜欢的代码缩进在一个jupyter笔记本python 3正确

import numpy as np
from sklearn.tree import _tree

def tree_to_code(tree, feature_names):
    tree_ = tree.tree_
    feature_name = [feature_names[i] 
                    if i != _tree.TREE_UNDEFINED else "undefined!" 
                    for i in tree_.feature]
    print("def tree({}):".format(", ".join(feature_names)))

    def recurse(node, depth):
        indent = "    " * depth
        if tree_.feature[node] != _tree.TREE_UNDEFINED:
            name = feature_name[node]
            threshold = tree_.threshold[node]
            print("{}if {} <= {}:".format(indent, name, threshold))
            recurse(tree_.children_left[node], depth + 1)
            print("{}else:  # if {} > {}".format(indent, name, threshold))
            recurse(tree_.children_right[node], depth + 1)
        else:
            print("{}return {}".format(indent, np.argmax(tree_.value[node])))

    recurse(0, 1)

Scikit learn在0.21版(2019年5月)中引入了一个名为export_text的有趣的新方法,用于从树中提取规则。这里的文档。不再需要创建自定义函数。

一旦你适应了你的模型,你只需要两行代码。首先,导入export_text:

from sklearn.tree import export_text

其次,创建一个包含规则的对象。为了使规则看起来更具可读性,使用feature_names参数并传递一个特性名称列表。例如,如果你的模型是model,你的特征是在一个名为X_train的数据框架中命名的,你可以创建一个名为tree_rules的对象:

tree_rules = export_text(model, feature_names=list(X_train.columns))

然后打印或保存tree_rules。输出如下所示:

|--- Age <= 0.63
|   |--- EstimatedSalary <= 0.61
|   |   |--- Age <= -0.16
|   |   |   |--- class: 0
|   |   |--- Age >  -0.16
|   |   |   |--- EstimatedSalary <= -0.06
|   |   |   |   |--- class: 0
|   |   |   |--- EstimatedSalary >  -0.06
|   |   |   |   |--- EstimatedSalary <= 0.40
|   |   |   |   |   |--- EstimatedSalary <= 0.03
|   |   |   |   |   |   |--- class: 1

我修改了Zelazny7提交的代码来打印一些伪代码:

def get_code(tree, feature_names):
        left      = tree.tree_.children_left
        right     = tree.tree_.children_right
        threshold = tree.tree_.threshold
        features  = [feature_names[i] for i in tree.tree_.feature]
        value = tree.tree_.value

        def recurse(left, right, threshold, features, node):
                if (threshold[node] != -2):
                        print "if ( " + features[node] + " <= " + str(threshold[node]) + " ) {"
                        if left[node] != -1:
                                recurse (left, right, threshold, features,left[node])
                        print "} else {"
                        if right[node] != -1:
                                recurse (left, right, threshold, features,right[node])
                        print "}"
                else:
                        print "return " + str(value[node])

        recurse(left, right, threshold, features, 0)

如果你在同一个例子中调用get_code(dt, df.columns),你会得到:

if ( col1 <= 0.5 ) {
return [[ 1.  0.]]
} else {
if ( col2 <= 4.5 ) {
return [[ 0.  1.]]
} else {
if ( col1 <= 2.5 ) {
return [[ 1.  0.]]
} else {
return [[ 0.  1.]]
}
}
}

下面是一个函数,在python3下打印scikit-learn决策树的规则,并对条件块进行偏移,使结构更具可读性:

def print_decision_tree(tree, feature_names=None, offset_unit='    '):
    '''Plots textual representation of rules of a decision tree
    tree: scikit-learn representation of tree
    feature_names: list of feature names. They are set to f1,f2,f3,... if not specified
    offset_unit: a string of offset of the conditional block'''

    left      = tree.tree_.children_left
    right     = tree.tree_.children_right
    threshold = tree.tree_.threshold
    value = tree.tree_.value
    if feature_names is None:
        features  = ['f%d'%i for i in tree.tree_.feature]
    else:
        features  = [feature_names[i] for i in tree.tree_.feature]        

    def recurse(left, right, threshold, features, node, depth=0):
            offset = offset_unit*depth
            if (threshold[node] != -2):
                    print(offset+"if ( " + features[node] + " <= " + str(threshold[node]) + " ) {")
                    if left[node] != -1:
                            recurse (left, right, threshold, features,left[node],depth+1)
                    print(offset+"} else {")
                    if right[node] != -1:
                            recurse (left, right, threshold, features,right[node],depth+1)
                    print(offset+"}")
            else:
                    print(offset+"return " + str(value[node]))

    recurse(left, right, threshold, features, 0,0)

因为每个人都很乐于助人,所以我将对Zelazny7和Daniele的漂亮解决方案进行修改。这是针对python 2.7的,使用tab使其更具可读性:

def get_code(tree, feature_names, tabdepth=0):
    left      = tree.tree_.children_left
    right     = tree.tree_.children_right
    threshold = tree.tree_.threshold
    features  = [feature_names[i] for i in tree.tree_.feature]
    value = tree.tree_.value

    def recurse(left, right, threshold, features, node, tabdepth=0):
            if (threshold[node] != -2):
                    print '\t' * tabdepth,
                    print "if ( " + features[node] + " <= " + str(threshold[node]) + " ) {"
                    if left[node] != -1:
                            recurse (left, right, threshold, features,left[node], tabdepth+1)
                    print '\t' * tabdepth,
                    print "} else {"
                    if right[node] != -1:
                            recurse (left, right, threshold, features,right[node], tabdepth+1)
                    print '\t' * tabdepth,
                    print "}"
            else:
                    print '\t' * tabdepth,
                    print "return " + str(value[node])

    recurse(left, right, threshold, features, 0)