我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?

喜欢的东西:

if A>0.4 then if B<0.2 then if C>0.8 then class='X'

当前回答

下面是一种使用SKompiler库将整个树转换为单个(不一定太容易读懂)python表达式的方法:

from skompiler import skompile
skompile(dtree.predict).to('python/code')

其他回答

下面是一种使用SKompiler库将整个树转换为单个(不一定太容易读懂)python表达式的方法:

from skompiler import skompile
skompile(dtree.predict).to('python/code')

从这个答案中,您可以得到一个可读且高效的表示:https://stackoverflow.com/a/65939892/3746632

输出如下所示。X为一维向量,表示单个实例的特征。

from numba import jit,njit
@njit
def predict(X):
    ret = 0
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                pass
        else:  # if w_mexico > 0.5
            ret += 1
    else:  # if w_pizza > 0.5
        pass
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                pass
        else:  # if w_mexico > 0.5
            pass
    else:  # if w_pizza > 0.5
        ret += 1
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                ret += 1
        else:  # if w_mexico > 0.5
            ret += 1
    else:  # if w_pizza > 0.5
        pass
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                ret += 1
        else:  # if w_mexico > 0.5
            pass
    else:  # if w_pizza > 0.5
        ret += 1
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                pass
        else:  # if w_mexico > 0.5
            pass
    else:  # if w_pizza > 0.5
        pass
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                pass
        else:  # if w_mexico > 0.5
            ret += 1
    else:  # if w_pizza > 0.5
        ret += 1
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                pass
        else:  # if w_mexico > 0.5
            pass
    else:  # if w_pizza > 0.5
        ret += 1
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                pass
        else:  # if w_mexico > 0.5
            pass
    else:  # if w_pizza > 0.5
        pass
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                pass
        else:  # if w_mexico > 0.5
            pass
    else:  # if w_pizza > 0.5
        pass
    if X[0] <= 0.5: # if w_pizza <= 0.5
        if X[1] <= 0.5: # if w_mexico <= 0.5
            if X[2] <= 0.5: # if w_reusable <= 0.5
                ret += 1
            else:  # if w_reusable > 0.5
                pass
        else:  # if w_mexico > 0.5
            pass
    else:  # if w_pizza > 0.5
        pass
    return ret/10

我需要一种更人性化的决策树规则格式。我正在构建开源AutoML Python包,很多时候MLJAR用户希望从树中看到确切的规则。

这就是为什么我实现了一个基于paulkernfeld答案的函数。

def get_rules(tree, feature_names, class_names):
    tree_ = tree.tree_
    feature_name = [
        feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
        for i in tree_.feature
    ]

    paths = []
    path = []
    
    def recurse(node, path, paths):
        
        if tree_.feature[node] != _tree.TREE_UNDEFINED:
            name = feature_name[node]
            threshold = tree_.threshold[node]
            p1, p2 = list(path), list(path)
            p1 += [f"({name} <= {np.round(threshold, 3)})"]
            recurse(tree_.children_left[node], p1, paths)
            p2 += [f"({name} > {np.round(threshold, 3)})"]
            recurse(tree_.children_right[node], p2, paths)
        else:
            path += [(tree_.value[node], tree_.n_node_samples[node])]
            paths += [path]
            
    recurse(0, path, paths)

    # sort by samples count
    samples_count = [p[-1][1] for p in paths]
    ii = list(np.argsort(samples_count))
    paths = [paths[i] for i in reversed(ii)]
    
    rules = []
    for path in paths:
        rule = "if "
        
        for p in path[:-1]:
            if rule != "if ":
                rule += " and "
            rule += str(p)
        rule += " then "
        if class_names is None:
            rule += "response: "+str(np.round(path[-1][0][0][0],3))
        else:
            classes = path[-1][0][0]
            l = np.argmax(classes)
            rule += f"class: {class_names[l]} (proba: {np.round(100.0*classes[l]/np.sum(classes),2)}%)"
        rule += f" | based on {path[-1][1]:,} samples"
        rules += [rule]
        
    return rules

规则按照分配给每个规则的训练样本的数量进行排序。对于每条规则,都有关于预测的类名和分类任务预测概率的信息。对于回归任务,只打印关于预测值的信息。

例子

from sklearn import datasets
from sklearn.tree import DecisionTreeRegressor
from sklearn import tree

# Prepare the data data
boston = datasets.load_boston()
X = boston.data
y = boston.target

# Fit the regressor, set max_depth = 3
regr = DecisionTreeRegressor(max_depth=3, random_state=1234)
model = regr.fit(X, y)

# Print rules
rules = get_rules(regr, boston.feature_names, None)
for r in rules:
    print(r)

印刷规则:

if (RM <= 6.941) and (LSTAT <= 14.4) and (DIS > 1.385) then response: 22.905 | based on 250 samples
if (RM <= 6.941) and (LSTAT > 14.4) and (CRIM <= 6.992) then response: 17.138 | based on 101 samples
if (RM <= 6.941) and (LSTAT > 14.4) and (CRIM > 6.992) then response: 11.978 | based on 74 samples
if (RM > 6.941) and (RM <= 7.437) and (NOX <= 0.659) then response: 33.349 | based on 43 samples
if (RM > 6.941) and (RM > 7.437) and (PTRATIO <= 19.65) then response: 45.897 | based on 29 samples
if (RM <= 6.941) and (LSTAT <= 14.4) and (DIS <= 1.385) then response: 45.58 | based on 5 samples
if (RM > 6.941) and (RM <= 7.437) and (NOX > 0.659) then response: 14.4 | based on 3 samples
if (RM > 6.941) and (RM > 7.437) and (PTRATIO > 19.65) then response: 21.9 | based on 1 samples

我在我的文章中总结了从决策树中提取规则的方法:用Scikit-Learn和Python以3种方式从决策树中提取规则。

在0.18.0版本中,有一个新的DecisionTreeClassifier方法decision_path。开发人员提供了一个广泛的(文档良好的)演练。

演练中打印树结构的第一部分代码似乎没有问题。但是,我修改了第二节中的代码来检查一个示例。我的更改用# <——表示

在拉取请求#8653和#10951中指出错误后,下面代码中由# <——标记的更改已在演练链接中更新。现在就容易多了。

sample_id = 0
node_index = node_indicator.indices[node_indicator.indptr[sample_id]:
                                    node_indicator.indptr[sample_id + 1]]

print('Rules used to predict sample %s: ' % sample_id)
for node_id in node_index:

    if leave_id[sample_id] == node_id:  # <-- changed != to ==
        #continue # <-- comment out
        print("leaf node {} reached, no decision here".format(leave_id[sample_id])) # <--

    else: # < -- added else to iterate through decision nodes
        if (X_test[sample_id, feature[node_id]] <= threshold[node_id]):
            threshold_sign = "<="
        else:
            threshold_sign = ">"

        print("decision id node %s : (X[%s, %s] (= %s) %s %s)"
              % (node_id,
                 sample_id,
                 feature[node_id],
                 X_test[sample_id, feature[node_id]], # <-- changed i to sample_id
                 threshold_sign,
                 threshold[node_id]))

Rules used to predict sample 0: 
decision id node 0 : (X[0, 3] (= 2.4) > 0.800000011921)
decision id node 2 : (X[0, 2] (= 5.1) > 4.94999980927)
leaf node 4 reached, no decision here

更改sample_id以查看其他示例的决策路径。我没有向开发人员询问这些更改,只是在示例中看起来更直观。

下面是一个通过转换export_text的输出从决策树生成Python代码的函数:

import string
from sklearn.tree import export_text

def export_py_code(tree, feature_names, max_depth=100, spacing=4):
    if spacing < 2:
        raise ValueError('spacing must be > 1')

    # Clean up feature names (for correctness)
    nums = string.digits
    alnums = string.ascii_letters + nums
    clean = lambda s: ''.join(c if c in alnums else '_' for c in s)
    features = [clean(x) for x in feature_names]
    features = ['_'+x if x[0] in nums else x for x in features if x]
    if len(set(features)) != len(feature_names):
        raise ValueError('invalid feature names')

    # First: export tree to text
    res = export_text(tree, feature_names=features, 
                        max_depth=max_depth,
                        decimals=6,
                        spacing=spacing-1)

    # Second: generate Python code from the text
    skip, dash = ' '*spacing, '-'*(spacing-1)
    code = 'def decision_tree({}):\n'.format(', '.join(features))
    for line in repr(tree).split('\n'):
        code += skip + "# " + line + '\n'
    for line in res.split('\n'):
        line = line.rstrip().replace('|',' ')
        if '<' in line or '>' in line:
            line, val = line.rsplit(maxsplit=1)
            line = line.replace(' ' + dash, 'if')
            line = '{} {:g}:'.format(line, float(val))
        else:
            line = line.replace(' {} class:'.format(dash), 'return')
        code += skip + line + '\n'

    return code

示例用法:

res = export_py_code(tree, feature_names=names, spacing=4)
print (res)

样例输出:

def decision_tree(f1, f2, f3):
    # DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=3,
    #                        max_features=None, max_leaf_nodes=None,
    #                        min_impurity_decrease=0.0, min_impurity_split=None,
    #                        min_samples_leaf=1, min_samples_split=2,
    #                        min_weight_fraction_leaf=0.0, presort=False,
    #                        random_state=42, splitter='best')
    if f1 <= 12.5:
        if f2 <= 17.5:
            if f1 <= 10.5:
                return 2
            if f1 > 10.5:
                return 3
        if f2 > 17.5:
            if f2 <= 22.5:
                return 1
            if f2 > 22.5:
                return 1
    if f1 > 12.5:
        if f1 <= 17.5:
            if f3 <= 23.5:
                return 2
            if f3 > 23.5:
                return 3
        if f1 > 17.5:
            if f1 <= 25:
                return 1
            if f1 > 25:
                return 2

上面的示例生成了names = ['f'+str(j+1) for j in range(NUM_FEATURES)]。

一个方便的功能是,它可以生成更小的文件大小与减少间距。只需要设置spacing=2。