我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
当前回答
显然,很久以前就有人决定尝试将以下函数添加到官方scikit的树导出函数中(基本上只支持export_graphviz)
def export_dict(tree, feature_names=None, max_depth=None) :
"""Export a decision tree in dict format.
以下是他的全部承诺:
https://github.com/scikit-learn/scikit-learn/blob/79bdc8f711d0af225ed6be9fdb708cea9f98a910/sklearn/tree/export.py
不太确定这条评论发生了什么。但是你也可以尝试使用这个函数。
我认为这为scikit-learn的优秀人员提供了一个严肃的文档需求,以正确地记录sklearn.tree.Tree API,这是一个底层的树结构,DecisionTreeClassifier将其作为属性tree_公开。
其他回答
我相信这个答案比这里的其他答案更正确:
from sklearn.tree import _tree
def tree_to_code(tree, feature_names):
tree_ = tree.tree_
feature_name = [
feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature
]
print "def tree({}):".format(", ".join(feature_names))
def recurse(node, depth):
indent = " " * depth
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
print "{}if {} <= {}:".format(indent, name, threshold)
recurse(tree_.children_left[node], depth + 1)
print "{}else: # if {} > {}".format(indent, name, threshold)
recurse(tree_.children_right[node], depth + 1)
else:
print "{}return {}".format(indent, tree_.value[node])
recurse(0, 1)
这将打印出一个有效的Python函数。下面是一个树的输出示例,它试图返回它的输入,一个0到10之间的数字。
def tree(f0):
if f0 <= 6.0:
if f0 <= 1.5:
return [[ 0.]]
else: # if f0 > 1.5
if f0 <= 4.5:
if f0 <= 3.5:
return [[ 3.]]
else: # if f0 > 3.5
return [[ 4.]]
else: # if f0 > 4.5
return [[ 5.]]
else: # if f0 > 6.0
if f0 <= 8.5:
if f0 <= 7.5:
return [[ 7.]]
else: # if f0 > 7.5
return [[ 8.]]
else: # if f0 > 8.5
return [[ 9.]]
以下是我在其他答案中看到的一些绊脚石:
使用tree_。用阈值== -2来判断节点是否是叶节点不是一个好主意。如果它是一个阈值为-2的真实决策节点呢?相反,你应该看看树。Feature or tree.children_*。 对于tree_中的i,行features = [feature_names[i]。我的sklearn版本崩溃了,因为树。树_。特征为-2(特别是叶节点)。 递归函数中不需要有多个if语句,一个就可以了。
我创建了自己的函数,从sklearn创建的决策树中提取规则:
import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier
# dummy data:
df = pd.DataFrame({'col1':[0,1,2,3],'col2':[3,4,5,6],'dv':[0,1,0,1]})
# create decision tree
dt = DecisionTreeClassifier(max_depth=5, min_samples_leaf=1)
dt.fit(df.ix[:,:2], df.dv)
这个函数首先从节点(在子数组中由-1标识)开始,然后递归地查找父节点。我称之为节点的“沿袭”。在此过程中,我获取了我需要创建if/then/else SAS逻辑的值:
def get_lineage(tree, feature_names):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
features = [feature_names[i] for i in tree.tree_.feature]
# get ids of child nodes
idx = np.argwhere(left == -1)[:,0]
def recurse(left, right, child, lineage=None):
if lineage is None:
lineage = [child]
if child in left:
parent = np.where(left == child)[0].item()
split = 'l'
else:
parent = np.where(right == child)[0].item()
split = 'r'
lineage.append((parent, split, threshold[parent], features[parent]))
if parent == 0:
lineage.reverse()
return lineage
else:
return recurse(left, right, parent, lineage)
for child in idx:
for node in recurse(left, right, child):
print node
下面的元组集包含了创建SAS if/then/else语句所需的所有内容。我不喜欢在SAS中使用do块,这就是为什么我创建逻辑来描述节点的整个路径。元组后的单个整数为路径中终端节点的ID。所有前面的元组组合起来创建该节点。
In [1]: get_lineage(dt, df.columns)
(0, 'l', 0.5, 'col1')
1
(0, 'r', 0.5, 'col1')
(2, 'l', 4.5, 'col2')
3
(0, 'r', 0.5, 'col1')
(2, 'r', 4.5, 'col2')
(4, 'l', 2.5, 'col1')
5
(0, 'r', 0.5, 'col1')
(2, 'r', 4.5, 'col2')
(4, 'r', 2.5, 'col1')
6
Thank for the wonderful solution of @paulkerfeld. On top of his solution, for all those who want to have a serialized version of trees, just use tree.threshold, tree.children_left, tree.children_right, tree.feature and tree.value. Since the leaves don't have splits and hence no feature names and children, their placeholder in tree.feature and tree.children_*** are _tree.TREE_UNDEFINED and _tree.TREE_LEAF. Every split is assigned a unique index by depth first search. Notice that the tree.value is of shape [n, 1, 1]
现在可以使用export_text了。
from sklearn.tree import export_text
r = export_text(loan_tree, feature_names=(list(X_train.columns)))
print(r)
来自[sklearn][1]的完整示例
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_text
iris = load_iris()
X = iris['data']
y = iris['target']
decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2)
decision_tree = decision_tree.fit(X, y)
r = export_text(decision_tree, feature_names=iris['feature_names'])
print(r)
从这个答案中,您可以得到一个可读且高效的表示:https://stackoverflow.com/a/65939892/3746632
输出如下所示。X为一维向量,表示单个实例的特征。
from numba import jit,njit
@njit
def predict(X):
ret = 0
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
ret += 1
else: # if w_pizza > 0.5
pass
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
ret += 1
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
ret += 1
else: # if w_mexico > 0.5
ret += 1
else: # if w_pizza > 0.5
pass
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
ret += 1
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
ret += 1
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
pass
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
ret += 1
else: # if w_pizza > 0.5
ret += 1
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
ret += 1
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
pass
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
pass
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
pass
return ret/10