我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
当前回答
显然,很久以前就有人决定尝试将以下函数添加到官方scikit的树导出函数中(基本上只支持export_graphviz)
def export_dict(tree, feature_names=None, max_depth=None) :
"""Export a decision tree in dict format.
以下是他的全部承诺:
https://github.com/scikit-learn/scikit-learn/blob/79bdc8f711d0af225ed6be9fdb708cea9f98a910/sklearn/tree/export.py
不太确定这条评论发生了什么。但是你也可以尝试使用这个函数。
我认为这为scikit-learn的优秀人员提供了一个严肃的文档需求,以正确地记录sklearn.tree.Tree API,这是一个底层的树结构,DecisionTreeClassifier将其作为属性tree_公开。
其他回答
现在可以使用export_text了。
from sklearn.tree import export_text
r = export_text(loan_tree, feature_names=(list(X_train.columns)))
print(r)
来自[sklearn][1]的完整示例
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_text
iris = load_iris()
X = iris['data']
y = iris['target']
decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2)
decision_tree = decision_tree.fit(X, y)
r = export_text(decision_tree, feature_names=iris['feature_names'])
print(r)
我修改了Zelazny7提交的代码来打印一些伪代码:
def get_code(tree, feature_names):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
features = [feature_names[i] for i in tree.tree_.feature]
value = tree.tree_.value
def recurse(left, right, threshold, features, node):
if (threshold[node] != -2):
print "if ( " + features[node] + " <= " + str(threshold[node]) + " ) {"
if left[node] != -1:
recurse (left, right, threshold, features,left[node])
print "} else {"
if right[node] != -1:
recurse (left, right, threshold, features,right[node])
print "}"
else:
print "return " + str(value[node])
recurse(left, right, threshold, features, 0)
如果你在同一个例子中调用get_code(dt, df.columns),你会得到:
if ( col1 <= 0.5 ) {
return [[ 1. 0.]]
} else {
if ( col2 <= 4.5 ) {
return [[ 0. 1.]]
} else {
if ( col1 <= 2.5 ) {
return [[ 1. 0.]]
} else {
return [[ 0. 1.]]
}
}
}
您还可以通过区分它属于哪个类,甚至通过提到它的输出值,使它具有更丰富的信息。
def print_decision_tree(tree, feature_names, offset_unit=' '):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
value = tree.tree_.value
if feature_names is None:
features = ['f%d'%i for i in tree.tree_.feature]
else:
features = [feature_names[i] for i in tree.tree_.feature]
def recurse(left, right, threshold, features, node, depth=0):
offset = offset_unit*depth
if (threshold[node] != -2):
print(offset+"if ( " + features[node] + " <= " + str(threshold[node]) + " ) {")
if left[node] != -1:
recurse (left, right, threshold, features,left[node],depth+1)
print(offset+"} else {")
if right[node] != -1:
recurse (left, right, threshold, features,right[node],depth+1)
print(offset+"}")
else:
#print(offset,value[node])
#To remove values from node
temp=str(value[node])
mid=len(temp)//2
tempx=[]
tempy=[]
cnt=0
for i in temp:
if cnt<=mid:
tempx.append(i)
cnt+=1
else:
tempy.append(i)
cnt+=1
val_yes=[]
val_no=[]
res=[]
for j in tempx:
if j=="[" or j=="]" or j=="." or j==" ":
res.append(j)
else:
val_no.append(j)
for j in tempy:
if j=="[" or j=="]" or j=="." or j==" ":
res.append(j)
else:
val_yes.append(j)
val_yes = int("".join(map(str, val_yes)))
val_no = int("".join(map(str, val_no)))
if val_yes>val_no:
print(offset,'\033[1m',"YES")
print('\033[0m')
elif val_no>val_yes:
print(offset,'\033[1m',"NO")
print('\033[0m')
else:
print(offset,'\033[1m',"Tie")
print('\033[0m')
recurse(left, right, threshold, features, 0,0)
下面的代码是我在anaconda python 2.7下的方法,加上一个包名“pydot-ng”,以制作具有决策规则的PDF文件。希望对大家有所帮助。
from sklearn import tree
clf = tree.DecisionTreeClassifier(max_leaf_nodes=n)
clf_ = clf.fit(X, data_y)
feature_names = X.columns
class_name = clf_.classes_.astype(int).astype(str)
def output_pdf(clf_, name):
from sklearn import tree
from sklearn.externals.six import StringIO
import pydot_ng as pydot
dot_data = StringIO()
tree.export_graphviz(clf_, out_file=dot_data,
feature_names=feature_names,
class_names=class_name,
filled=True, rounded=True,
special_characters=True,
node_ids=1,)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
graph.write_pdf("%s.pdf"%name)
output_pdf(clf_, name='filename%s'%n)
这是一个树形图
下面是一个通过转换export_text的输出从决策树生成Python代码的函数:
import string
from sklearn.tree import export_text
def export_py_code(tree, feature_names, max_depth=100, spacing=4):
if spacing < 2:
raise ValueError('spacing must be > 1')
# Clean up feature names (for correctness)
nums = string.digits
alnums = string.ascii_letters + nums
clean = lambda s: ''.join(c if c in alnums else '_' for c in s)
features = [clean(x) for x in feature_names]
features = ['_'+x if x[0] in nums else x for x in features if x]
if len(set(features)) != len(feature_names):
raise ValueError('invalid feature names')
# First: export tree to text
res = export_text(tree, feature_names=features,
max_depth=max_depth,
decimals=6,
spacing=spacing-1)
# Second: generate Python code from the text
skip, dash = ' '*spacing, '-'*(spacing-1)
code = 'def decision_tree({}):\n'.format(', '.join(features))
for line in repr(tree).split('\n'):
code += skip + "# " + line + '\n'
for line in res.split('\n'):
line = line.rstrip().replace('|',' ')
if '<' in line or '>' in line:
line, val = line.rsplit(maxsplit=1)
line = line.replace(' ' + dash, 'if')
line = '{} {:g}:'.format(line, float(val))
else:
line = line.replace(' {} class:'.format(dash), 'return')
code += skip + line + '\n'
return code
示例用法:
res = export_py_code(tree, feature_names=names, spacing=4)
print (res)
样例输出:
def decision_tree(f1, f2, f3):
# DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=3,
# max_features=None, max_leaf_nodes=None,
# min_impurity_decrease=0.0, min_impurity_split=None,
# min_samples_leaf=1, min_samples_split=2,
# min_weight_fraction_leaf=0.0, presort=False,
# random_state=42, splitter='best')
if f1 <= 12.5:
if f2 <= 17.5:
if f1 <= 10.5:
return 2
if f1 > 10.5:
return 3
if f2 > 17.5:
if f2 <= 22.5:
return 1
if f2 > 22.5:
return 1
if f1 > 12.5:
if f1 <= 17.5:
if f3 <= 23.5:
return 2
if f3 > 23.5:
return 3
if f1 > 17.5:
if f1 <= 25:
return 1
if f1 > 25:
return 2
上面的示例生成了names = ['f'+str(j+1) for j in range(NUM_FEATURES)]。
一个方便的功能是,它可以生成更小的文件大小与减少间距。只需要设置spacing=2。