我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
当前回答
在0.18.0版本中,有一个新的DecisionTreeClassifier方法decision_path。开发人员提供了一个广泛的(文档良好的)演练。
演练中打印树结构的第一部分代码似乎没有问题。但是,我修改了第二节中的代码来检查一个示例。我的更改用# <——表示
在拉取请求#8653和#10951中指出错误后,下面代码中由# <——标记的更改已在演练链接中更新。现在就容易多了。
sample_id = 0
node_index = node_indicator.indices[node_indicator.indptr[sample_id]:
node_indicator.indptr[sample_id + 1]]
print('Rules used to predict sample %s: ' % sample_id)
for node_id in node_index:
if leave_id[sample_id] == node_id: # <-- changed != to ==
#continue # <-- comment out
print("leaf node {} reached, no decision here".format(leave_id[sample_id])) # <--
else: # < -- added else to iterate through decision nodes
if (X_test[sample_id, feature[node_id]] <= threshold[node_id]):
threshold_sign = "<="
else:
threshold_sign = ">"
print("decision id node %s : (X[%s, %s] (= %s) %s %s)"
% (node_id,
sample_id,
feature[node_id],
X_test[sample_id, feature[node_id]], # <-- changed i to sample_id
threshold_sign,
threshold[node_id]))
Rules used to predict sample 0:
decision id node 0 : (X[0, 3] (= 2.4) > 0.800000011921)
decision id node 2 : (X[0, 2] (= 5.1) > 4.94999980927)
leaf node 4 reached, no decision here
更改sample_id以查看其他示例的决策路径。我没有向开发人员询问这些更改,只是在示例中看起来更直观。
其他回答
from StringIO import StringIO
out = StringIO()
out = tree.export_graphviz(clf, out_file=out)
print out.getvalue()
你可以看到一个有向图树。然后,clf.tree_。Feature和clf.tree_。值分别为节点数组拆分特征和节点数组值。你可以参考这个github来源的更多细节。
我创建了自己的函数,从sklearn创建的决策树中提取规则:
import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier
# dummy data:
df = pd.DataFrame({'col1':[0,1,2,3],'col2':[3,4,5,6],'dv':[0,1,0,1]})
# create decision tree
dt = DecisionTreeClassifier(max_depth=5, min_samples_leaf=1)
dt.fit(df.ix[:,:2], df.dv)
这个函数首先从节点(在子数组中由-1标识)开始,然后递归地查找父节点。我称之为节点的“沿袭”。在此过程中,我获取了我需要创建if/then/else SAS逻辑的值:
def get_lineage(tree, feature_names):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
features = [feature_names[i] for i in tree.tree_.feature]
# get ids of child nodes
idx = np.argwhere(left == -1)[:,0]
def recurse(left, right, child, lineage=None):
if lineage is None:
lineage = [child]
if child in left:
parent = np.where(left == child)[0].item()
split = 'l'
else:
parent = np.where(right == child)[0].item()
split = 'r'
lineage.append((parent, split, threshold[parent], features[parent]))
if parent == 0:
lineage.reverse()
return lineage
else:
return recurse(left, right, parent, lineage)
for child in idx:
for node in recurse(left, right, child):
print node
下面的元组集包含了创建SAS if/then/else语句所需的所有内容。我不喜欢在SAS中使用do块,这就是为什么我创建逻辑来描述节点的整个路径。元组后的单个整数为路径中终端节点的ID。所有前面的元组组合起来创建该节点。
In [1]: get_lineage(dt, df.columns)
(0, 'l', 0.5, 'col1')
1
(0, 'r', 0.5, 'col1')
(2, 'l', 4.5, 'col2')
3
(0, 'r', 0.5, 'col1')
(2, 'r', 4.5, 'col2')
(4, 'l', 2.5, 'col1')
5
(0, 'r', 0.5, 'col1')
(2, 'r', 4.5, 'col2')
(4, 'r', 2.5, 'col1')
6
下面是一个通过转换export_text的输出从决策树生成Python代码的函数:
import string
from sklearn.tree import export_text
def export_py_code(tree, feature_names, max_depth=100, spacing=4):
if spacing < 2:
raise ValueError('spacing must be > 1')
# Clean up feature names (for correctness)
nums = string.digits
alnums = string.ascii_letters + nums
clean = lambda s: ''.join(c if c in alnums else '_' for c in s)
features = [clean(x) for x in feature_names]
features = ['_'+x if x[0] in nums else x for x in features if x]
if len(set(features)) != len(feature_names):
raise ValueError('invalid feature names')
# First: export tree to text
res = export_text(tree, feature_names=features,
max_depth=max_depth,
decimals=6,
spacing=spacing-1)
# Second: generate Python code from the text
skip, dash = ' '*spacing, '-'*(spacing-1)
code = 'def decision_tree({}):\n'.format(', '.join(features))
for line in repr(tree).split('\n'):
code += skip + "# " + line + '\n'
for line in res.split('\n'):
line = line.rstrip().replace('|',' ')
if '<' in line or '>' in line:
line, val = line.rsplit(maxsplit=1)
line = line.replace(' ' + dash, 'if')
line = '{} {:g}:'.format(line, float(val))
else:
line = line.replace(' {} class:'.format(dash), 'return')
code += skip + line + '\n'
return code
示例用法:
res = export_py_code(tree, feature_names=names, spacing=4)
print (res)
样例输出:
def decision_tree(f1, f2, f3):
# DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=3,
# max_features=None, max_leaf_nodes=None,
# min_impurity_decrease=0.0, min_impurity_split=None,
# min_samples_leaf=1, min_samples_split=2,
# min_weight_fraction_leaf=0.0, presort=False,
# random_state=42, splitter='best')
if f1 <= 12.5:
if f2 <= 17.5:
if f1 <= 10.5:
return 2
if f1 > 10.5:
return 3
if f2 > 17.5:
if f2 <= 22.5:
return 1
if f2 > 22.5:
return 1
if f1 > 12.5:
if f1 <= 17.5:
if f3 <= 23.5:
return 2
if f3 > 23.5:
return 3
if f1 > 17.5:
if f1 <= 25:
return 1
if f1 > 25:
return 2
上面的示例生成了names = ['f'+str(j+1) for j in range(NUM_FEATURES)]。
一个方便的功能是,它可以生成更小的文件大小与减少间距。只需要设置spacing=2。
Thank for the wonderful solution of @paulkerfeld. On top of his solution, for all those who want to have a serialized version of trees, just use tree.threshold, tree.children_left, tree.children_right, tree.feature and tree.value. Since the leaves don't have splits and hence no feature names and children, their placeholder in tree.feature and tree.children_*** are _tree.TREE_UNDEFINED and _tree.TREE_LEAF. Every split is assigned a unique index by depth first search. Notice that the tree.value is of shape [n, 1, 1]
因为每个人都很乐于助人,所以我将对Zelazny7和Daniele的漂亮解决方案进行修改。这是针对python 2.7的,使用tab使其更具可读性:
def get_code(tree, feature_names, tabdepth=0):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
features = [feature_names[i] for i in tree.tree_.feature]
value = tree.tree_.value
def recurse(left, right, threshold, features, node, tabdepth=0):
if (threshold[node] != -2):
print '\t' * tabdepth,
print "if ( " + features[node] + " <= " + str(threshold[node]) + " ) {"
if left[node] != -1:
recurse (left, right, threshold, features,left[node], tabdepth+1)
print '\t' * tabdepth,
print "} else {"
if right[node] != -1:
recurse (left, right, threshold, features,right[node], tabdepth+1)
print '\t' * tabdepth,
print "}"
else:
print '\t' * tabdepth,
print "return " + str(value[node])
recurse(left, right, threshold, features, 0)