我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
当前回答
因为每个人都很乐于助人,所以我将对Zelazny7和Daniele的漂亮解决方案进行修改。这是针对python 2.7的,使用tab使其更具可读性:
def get_code(tree, feature_names, tabdepth=0):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
features = [feature_names[i] for i in tree.tree_.feature]
value = tree.tree_.value
def recurse(left, right, threshold, features, node, tabdepth=0):
if (threshold[node] != -2):
print '\t' * tabdepth,
print "if ( " + features[node] + " <= " + str(threshold[node]) + " ) {"
if left[node] != -1:
recurse (left, right, threshold, features,left[node], tabdepth+1)
print '\t' * tabdepth,
print "} else {"
if right[node] != -1:
recurse (left, right, threshold, features,right[node], tabdepth+1)
print '\t' * tabdepth,
print "}"
else:
print '\t' * tabdepth,
print "return " + str(value[node])
recurse(left, right, threshold, features, 0)
其他回答
from StringIO import StringIO
out = StringIO()
out = tree.export_graphviz(clf, out_file=out)
print out.getvalue()
你可以看到一个有向图树。然后,clf.tree_。Feature和clf.tree_。值分别为节点数组拆分特征和节点数组值。你可以参考这个github来源的更多细节。
这是您需要的代码
我已经修改了顶部喜欢的代码缩进在一个jupyter笔记本python 3正确
import numpy as np
from sklearn.tree import _tree
def tree_to_code(tree, feature_names):
tree_ = tree.tree_
feature_name = [feature_names[i]
if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature]
print("def tree({}):".format(", ".join(feature_names)))
def recurse(node, depth):
indent = " " * depth
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
print("{}if {} <= {}:".format(indent, name, threshold))
recurse(tree_.children_left[node], depth + 1)
print("{}else: # if {} > {}".format(indent, name, threshold))
recurse(tree_.children_right[node], depth + 1)
else:
print("{}return {}".format(indent, np.argmax(tree_.value[node])))
recurse(0, 1)
在0.18.0版本中,有一个新的DecisionTreeClassifier方法decision_path。开发人员提供了一个广泛的(文档良好的)演练。
演练中打印树结构的第一部分代码似乎没有问题。但是,我修改了第二节中的代码来检查一个示例。我的更改用# <——表示
在拉取请求#8653和#10951中指出错误后,下面代码中由# <——标记的更改已在演练链接中更新。现在就容易多了。
sample_id = 0
node_index = node_indicator.indices[node_indicator.indptr[sample_id]:
node_indicator.indptr[sample_id + 1]]
print('Rules used to predict sample %s: ' % sample_id)
for node_id in node_index:
if leave_id[sample_id] == node_id: # <-- changed != to ==
#continue # <-- comment out
print("leaf node {} reached, no decision here".format(leave_id[sample_id])) # <--
else: # < -- added else to iterate through decision nodes
if (X_test[sample_id, feature[node_id]] <= threshold[node_id]):
threshold_sign = "<="
else:
threshold_sign = ">"
print("decision id node %s : (X[%s, %s] (= %s) %s %s)"
% (node_id,
sample_id,
feature[node_id],
X_test[sample_id, feature[node_id]], # <-- changed i to sample_id
threshold_sign,
threshold[node_id]))
Rules used to predict sample 0:
decision id node 0 : (X[0, 3] (= 2.4) > 0.800000011921)
decision id node 2 : (X[0, 2] (= 5.1) > 4.94999980927)
leaf node 4 reached, no decision here
更改sample_id以查看其他示例的决策路径。我没有向开发人员询问这些更改,只是在示例中看起来更直观。
下面是一个函数,在python3下打印scikit-learn决策树的规则,并对条件块进行偏移,使结构更具可读性:
def print_decision_tree(tree, feature_names=None, offset_unit=' '):
'''Plots textual representation of rules of a decision tree
tree: scikit-learn representation of tree
feature_names: list of feature names. They are set to f1,f2,f3,... if not specified
offset_unit: a string of offset of the conditional block'''
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
value = tree.tree_.value
if feature_names is None:
features = ['f%d'%i for i in tree.tree_.feature]
else:
features = [feature_names[i] for i in tree.tree_.feature]
def recurse(left, right, threshold, features, node, depth=0):
offset = offset_unit*depth
if (threshold[node] != -2):
print(offset+"if ( " + features[node] + " <= " + str(threshold[node]) + " ) {")
if left[node] != -1:
recurse (left, right, threshold, features,left[node],depth+1)
print(offset+"} else {")
if right[node] != -1:
recurse (left, right, threshold, features,right[node],depth+1)
print(offset+"}")
else:
print(offset+"return " + str(value[node]))
recurse(left, right, threshold, features, 0,0)
我已经经历过这些了,但我需要把规则写成这种形式
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
所以我改编了@paulkernfeld的答案(谢谢),你可以根据自己的需要定制
def tree_to_code(tree, feature_names, Y):
tree_ = tree.tree_
feature_name = [
feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature
]
pathto=dict()
global k
k = 0
def recurse(node, depth, parent):
global k
indent = " " * depth
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
s= "{} <= {} ".format( name, threshold, node )
if node == 0:
pathto[node]=s
else:
pathto[node]=pathto[parent]+' & ' +s
recurse(tree_.children_left[node], depth + 1, node)
s="{} > {}".format( name, threshold)
if node == 0:
pathto[node]=s
else:
pathto[node]=pathto[parent]+' & ' +s
recurse(tree_.children_right[node], depth + 1, node)
else:
k=k+1
print(k,')',pathto[parent], tree_.value[node])
recurse(0, 1, 0)