我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
我能从决策树中的训练树中提取基本的决策规则(或“决策路径”)作为文本列表吗?
喜欢的东西:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
当前回答
这是基于@paulkernfeld的回答。如果你有一个包含特征的数据框架X和一个包含共振的目标数据框架y,你想知道哪个y值结束于哪个节点(并相应地绘制它),你可以做以下工作:
def tree_to_code(tree, feature_names):
from sklearn.tree import _tree
codelines = []
codelines.append('def get_cat(X_tmp):\n')
codelines.append(' catout = []\n')
codelines.append(' for codelines in range(0,X_tmp.shape[0]):\n')
codelines.append(' Xin = X_tmp.iloc[codelines]\n')
tree_ = tree.tree_
feature_name = [
feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature
]
#print "def tree({}):".format(", ".join(feature_names))
def recurse(node, depth):
indent = " " * depth
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
codelines.append ('{}if Xin["{}"] <= {}:\n'.format(indent, name, threshold))
recurse(tree_.children_left[node], depth + 1)
codelines.append( '{}else: # if Xin["{}"] > {}\n'.format(indent, name, threshold))
recurse(tree_.children_right[node], depth + 1)
else:
codelines.append( '{}mycat = {}\n'.format(indent, node))
recurse(0, 1)
codelines.append(' catout.append(mycat)\n')
codelines.append(' return pd.DataFrame(catout,index=X_tmp.index,columns=["category"])\n')
codelines.append('node_ids = get_cat(X)\n')
return codelines
mycode = tree_to_code(clf,X.columns.values)
# now execute the function and obtain the dataframe with all nodes
exec(''.join(mycode))
node_ids = [int(x[0]) for x in node_ids.values]
node_ids2 = pd.DataFrame(node_ids)
print('make plot')
import matplotlib.cm as cm
colors = cm.rainbow(np.linspace(0, 1, 1+max( list(set(node_ids)))))
#plt.figure(figsize=cm2inch(24, 21))
for i in list(set(node_ids)):
plt.plot(y[node_ids2.values==i],'o',color=colors[i], label=str(i))
mytitle = ['y colored by node']
plt.title(mytitle ,fontsize=14)
plt.xlabel('my xlabel')
plt.ylabel(tagname)
plt.xticks(rotation=70)
plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.00), shadow=True, ncol=9)
plt.tight_layout()
plt.show()
plt.close
不是最优雅的版本,但它做到了…
其他回答
我相信这个答案比这里的其他答案更正确:
from sklearn.tree import _tree
def tree_to_code(tree, feature_names):
tree_ = tree.tree_
feature_name = [
feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature
]
print "def tree({}):".format(", ".join(feature_names))
def recurse(node, depth):
indent = " " * depth
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
print "{}if {} <= {}:".format(indent, name, threshold)
recurse(tree_.children_left[node], depth + 1)
print "{}else: # if {} > {}".format(indent, name, threshold)
recurse(tree_.children_right[node], depth + 1)
else:
print "{}return {}".format(indent, tree_.value[node])
recurse(0, 1)
这将打印出一个有效的Python函数。下面是一个树的输出示例,它试图返回它的输入,一个0到10之间的数字。
def tree(f0):
if f0 <= 6.0:
if f0 <= 1.5:
return [[ 0.]]
else: # if f0 > 1.5
if f0 <= 4.5:
if f0 <= 3.5:
return [[ 3.]]
else: # if f0 > 3.5
return [[ 4.]]
else: # if f0 > 4.5
return [[ 5.]]
else: # if f0 > 6.0
if f0 <= 8.5:
if f0 <= 7.5:
return [[ 7.]]
else: # if f0 > 7.5
return [[ 8.]]
else: # if f0 > 8.5
return [[ 9.]]
以下是我在其他答案中看到的一些绊脚石:
使用tree_。用阈值== -2来判断节点是否是叶节点不是一个好主意。如果它是一个阈值为-2的真实决策节点呢?相反,你应该看看树。Feature or tree.children_*。 对于tree_中的i,行features = [feature_names[i]。我的sklearn版本崩溃了,因为树。树_。特征为-2(特别是叶节点)。 递归函数中不需要有多个if语句,一个就可以了。
Scikit learn在0.21版(2019年5月)中引入了一个名为export_text的有趣的新方法,用于从树中提取规则。这里的文档。不再需要创建自定义函数。
一旦你适应了你的模型,你只需要两行代码。首先,导入export_text:
from sklearn.tree import export_text
其次,创建一个包含规则的对象。为了使规则看起来更具可读性,使用feature_names参数并传递一个特性名称列表。例如,如果你的模型是model,你的特征是在一个名为X_train的数据框架中命名的,你可以创建一个名为tree_rules的对象:
tree_rules = export_text(model, feature_names=list(X_train.columns))
然后打印或保存tree_rules。输出如下所示:
|--- Age <= 0.63
| |--- EstimatedSalary <= 0.61
| | |--- Age <= -0.16
| | | |--- class: 0
| | |--- Age > -0.16
| | | |--- EstimatedSalary <= -0.06
| | | | |--- class: 0
| | | |--- EstimatedSalary > -0.06
| | | | |--- EstimatedSalary <= 0.40
| | | | | |--- EstimatedSalary <= 0.03
| | | | | | |--- class: 1
下面是一个函数,在python3下打印scikit-learn决策树的规则,并对条件块进行偏移,使结构更具可读性:
def print_decision_tree(tree, feature_names=None, offset_unit=' '):
'''Plots textual representation of rules of a decision tree
tree: scikit-learn representation of tree
feature_names: list of feature names. They are set to f1,f2,f3,... if not specified
offset_unit: a string of offset of the conditional block'''
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
value = tree.tree_.value
if feature_names is None:
features = ['f%d'%i for i in tree.tree_.feature]
else:
features = [feature_names[i] for i in tree.tree_.feature]
def recurse(left, right, threshold, features, node, depth=0):
offset = offset_unit*depth
if (threshold[node] != -2):
print(offset+"if ( " + features[node] + " <= " + str(threshold[node]) + " ) {")
if left[node] != -1:
recurse (left, right, threshold, features,left[node],depth+1)
print(offset+"} else {")
if right[node] != -1:
recurse (left, right, threshold, features,right[node],depth+1)
print(offset+"}")
else:
print(offset+"return " + str(value[node]))
recurse(left, right, threshold, features, 0,0)
在0.18.0版本中,有一个新的DecisionTreeClassifier方法decision_path。开发人员提供了一个广泛的(文档良好的)演练。
演练中打印树结构的第一部分代码似乎没有问题。但是,我修改了第二节中的代码来检查一个示例。我的更改用# <——表示
在拉取请求#8653和#10951中指出错误后,下面代码中由# <——标记的更改已在演练链接中更新。现在就容易多了。
sample_id = 0
node_index = node_indicator.indices[node_indicator.indptr[sample_id]:
node_indicator.indptr[sample_id + 1]]
print('Rules used to predict sample %s: ' % sample_id)
for node_id in node_index:
if leave_id[sample_id] == node_id: # <-- changed != to ==
#continue # <-- comment out
print("leaf node {} reached, no decision here".format(leave_id[sample_id])) # <--
else: # < -- added else to iterate through decision nodes
if (X_test[sample_id, feature[node_id]] <= threshold[node_id]):
threshold_sign = "<="
else:
threshold_sign = ">"
print("decision id node %s : (X[%s, %s] (= %s) %s %s)"
% (node_id,
sample_id,
feature[node_id],
X_test[sample_id, feature[node_id]], # <-- changed i to sample_id
threshold_sign,
threshold[node_id]))
Rules used to predict sample 0:
decision id node 0 : (X[0, 3] (= 2.4) > 0.800000011921)
decision id node 2 : (X[0, 2] (= 5.1) > 4.94999980927)
leaf node 4 reached, no decision here
更改sample_id以查看其他示例的决策路径。我没有向开发人员询问这些更改,只是在示例中看起来更直观。
from StringIO import StringIO
out = StringIO()
out = tree.export_graphviz(clf, out_file=out)
print out.getvalue()
你可以看到一个有向图树。然后,clf.tree_。Feature和clf.tree_。值分别为节点数组拆分特征和节点数组值。你可以参考这个github来源的更多细节。