Python中是否有SciPy函数或NumPy函数或模块来计算给定特定窗口的1D数组的运行平均值?


当前回答

有点晚了,但我已经做了我自己的小函数,它不环绕端点或垫与零,然后用于查找平均值。进一步的处理是,它还在线性间隔点上对信号进行重新采样。随意定制代码以获得其他特性。

该方法是一个简单的矩阵乘法与规范化高斯核。

def running_mean(y_in, x_in, N_out=101, sigma=1):
    '''
    Returns running mean as a Bell-curve weighted average at evenly spaced
    points. Does NOT wrap signal around, or pad with zeros.
    
    Arguments:
    y_in -- y values, the values to be smoothed and re-sampled
    x_in -- x values for array
    
    Keyword arguments:
    N_out -- NoOf elements in resampled array.
    sigma -- 'Width' of Bell-curve in units of param x .
    '''
    import numpy as np
    N_in = len(y_in)

    # Gaussian kernel
    x_out = np.linspace(np.min(x_in), np.max(x_in), N_out)
    x_in_mesh, x_out_mesh = np.meshgrid(x_in, x_out)
    gauss_kernel = np.exp(-np.square(x_in_mesh - x_out_mesh) / (2 * sigma**2))
    # Normalize kernel, such that the sum is one along axis 1
    normalization = np.tile(np.reshape(np.sum(gauss_kernel, axis=1), (N_out, 1)), (1, N_in))
    gauss_kernel_normalized = gauss_kernel / normalization
    # Perform running average as a linear operation
    y_out = gauss_kernel_normalized @ y_in

    return y_out, x_out

正弦信号加正态分布噪声的一个简单用法:

其他回答

我知道这是一个老问题,但这里有一个解决方案,它不使用任何额外的数据结构或库。它在输入列表的元素数量上是线性的,我想不出任何其他方法来使它更有效(实际上,如果有人知道更好的分配结果的方法,请告诉我)。

注意:使用numpy数组而不是列表会快得多,但我想消除所有依赖关系。通过多线程执行也可以提高性能

该函数假设输入列表是一维的,所以要小心。

### Running mean/Moving average
def running_mean(l, N):
    sum = 0
    result = list( 0 for x in l)

    for i in range( 0, N ):
        sum = sum + l[i]
        result[i] = sum / (i+1)

    for i in range( N, len(l) ):
        sum = sum - l[i-N] + l[i]
        result[i] = sum / N

    return result

例子

假设我们有一个列表data =[1,2,3,4,5,6],我们想在它上面计算周期为3的滚动平均值,并且你还想要一个与输入列表相同大小的输出列表(这是最常见的情况)。

第一个元素的索引为0,因此滚动平均值应该在索引为-2、-1和0的元素上计算。显然,我们没有data[-2]和data[-1](除非您想使用特殊的边界条件),因此我们假设这些元素为0。这相当于对列表进行零填充,除了我们实际上不填充它,只是跟踪需要填充的索引(从0到N-1)。

所以,对于前N个元素,我们只是在累加器中不断地把元素加起来。

result[0] = (0 + 0 + 1) / 3  = 0.333    ==   (sum + 1) / 3
result[1] = (0 + 1 + 2) / 3  = 1        ==   (sum + 2) / 3
result[2] = (1 + 2 + 3) / 3  = 2        ==   (sum + 3) / 3

从元素N+1开始,简单的累加是行不通的。我们期望的结果是[3]=(2 + 3 + 4)/3 = 3,但这与(sum + 4)/3 = 3.333不同。

计算正确值的方法是用sum+4减去数据[0]= 1,从而得到sum+4 - 1 = 9。

这是因为目前sum =数据[0]+数据[1]+数据[2],但对于每个i >= N也是如此,因为在减法之前,sum是数据[i-N] +…+ data[i-2] + data[i-1]。

出于教学目的,让我再添加两个Numpy解决方案(比cumsum解决方案慢):

import numpy as np
from numpy.lib.stride_tricks import as_strided

def ra_strides(arr, window):
    ''' Running average using as_strided'''
    n = arr.shape[0] - window + 1
    arr_strided = as_strided(arr, shape=[n, window], strides=2*arr.strides)
    return arr_strided.mean(axis=1)

def ra_add(arr, window):
    ''' Running average using add.reduceat'''
    n = arr.shape[0] - window + 1
    indices = np.array([0, window]*n) + np.repeat(np.arange(n), 2)
    arr = np.append(arr, 0)
    return np.add.reduceat(arr, indices )[::2]/window

使用的函数:as_strided, add.reduceat

或用于python计算的模块

在我在Tradewave.net的测试中,TA-lib总是赢:

import talib as ta
import numpy as np
import pandas as pd
import scipy
from scipy import signal
import time as t

PAIR = info.primary_pair
PERIOD = 30

def initialize():
    storage.reset()
    storage.elapsed = storage.get('elapsed', [0,0,0,0,0,0])

def cumsum_sma(array, period):
    ret = np.cumsum(array, dtype=float)
    ret[period:] = ret[period:] - ret[:-period]
    return ret[period - 1:] / period

def pandas_sma(array, period):
    return pd.rolling_mean(array, period)

def api_sma(array, period):
    # this method is native to Tradewave and does NOT return an array
    return (data[PAIR].ma(PERIOD))

def talib_sma(array, period):
    return ta.MA(array, period)

def convolve_sma(array, period):
    return np.convolve(array, np.ones((period,))/period, mode='valid')

def fftconvolve_sma(array, period):    
    return scipy.signal.fftconvolve(
        array, np.ones((period,))/period, mode='valid')    

def tick():

    close = data[PAIR].warmup_period('close')

    t1 = t.time()
    sma_api = api_sma(close, PERIOD)
    t2 = t.time()
    sma_cumsum = cumsum_sma(close, PERIOD)
    t3 = t.time()
    sma_pandas = pandas_sma(close, PERIOD)
    t4 = t.time()
    sma_talib = talib_sma(close, PERIOD)
    t5 = t.time()
    sma_convolve = convolve_sma(close, PERIOD)
    t6 = t.time()
    sma_fftconvolve = fftconvolve_sma(close, PERIOD)
    t7 = t.time()

    storage.elapsed[-1] = storage.elapsed[-1] + t2-t1
    storage.elapsed[-2] = storage.elapsed[-2] + t3-t2
    storage.elapsed[-3] = storage.elapsed[-3] + t4-t3
    storage.elapsed[-4] = storage.elapsed[-4] + t5-t4
    storage.elapsed[-5] = storage.elapsed[-5] + t6-t5    
    storage.elapsed[-6] = storage.elapsed[-6] + t7-t6        

    plot('sma_api', sma_api)  
    plot('sma_cumsum', sma_cumsum[-5])
    plot('sma_pandas', sma_pandas[-10])
    plot('sma_talib', sma_talib[-15])
    plot('sma_convolve', sma_convolve[-20])    
    plot('sma_fftconvolve', sma_fftconvolve[-25])

def stop():

    log('ticks....: %s' % info.max_ticks)

    log('api......: %.5f' % storage.elapsed[-1])
    log('cumsum...: %.5f' % storage.elapsed[-2])
    log('pandas...: %.5f' % storage.elapsed[-3])
    log('talib....: %.5f' % storage.elapsed[-4])
    log('convolve.: %.5f' % storage.elapsed[-5])    
    log('fft......: %.5f' % storage.elapsed[-6])

结果:

[2015-01-31 23:00:00] ticks....: 744
[2015-01-31 23:00:00] api......: 0.16445
[2015-01-31 23:00:00] cumsum...: 0.03189
[2015-01-31 23:00:00] pandas...: 0.03677
[2015-01-31 23:00:00] talib....: 0.00700  # <<< Winner!
[2015-01-31 23:00:00] convolve.: 0.04871
[2015-01-31 23:00:00] fft......: 0.22306

比起numpy或scipy,我建议熊猫们更快地做到这一点:

df['data'].rolling(3).mean()

这取列“数据”的3个周期的移动平均值(MA)。你也可以计算移位的版本,例如排除当前单元格的版本(向后移位一个)可以很容易地计算为:

df['data'].shift(periods=1).rolling(3).mean()

更新:下面的例子展示了老熊猫。Rolling_mean函数,该函数在最近版本的pandas中已被删除。该函数调用的现代等价函数将使用pandas.Series.rolling:

In [8]: pd.Series(x).rolling(window=N).mean().iloc[N-1:].values
Out[8]: 
array([ 0.49815397,  0.49844183,  0.49840518, ...,  0.49488191,
        0.49456679,  0.49427121])

pandas比NumPy或SciPy更适合这一点。它的函数rolling_mean很方便地完成了这项工作。当输入是一个数组时,它还返回一个NumPy数组。

使用任何定制的纯Python实现都很难在性能上击败rolling_mean。下面是针对两个提议的解决方案的性能示例:

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: def running_mean(x, N):
   ...:     cumsum = np.cumsum(np.insert(x, 0, 0)) 
   ...:     return (cumsum[N:] - cumsum[:-N]) / N
   ...:

In [4]: x = np.random.random(100000)

In [5]: N = 1000

In [6]: %timeit np.convolve(x, np.ones((N,))/N, mode='valid')
10 loops, best of 3: 172 ms per loop

In [7]: %timeit running_mean(x, N)
100 loops, best of 3: 6.72 ms per loop

In [8]: %timeit pd.rolling_mean(x, N)[N-1:]
100 loops, best of 3: 4.74 ms per loop

In [9]: np.allclose(pd.rolling_mean(x, N)[N-1:], running_mean(x, N))
Out[9]: True

关于如何处理边缘值,也有很好的选项。